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Figure 1: The proposed graph wavelets-based visualization allows to identify, in each time slice, regions from low to high variation (middle left)
of a function on the nodes of a graph (middle-right), while still enabling to analyze how those variation evolve over time (left). High frequency
variation indicates abrupt changes in the function, attracting users attention to relevant events, which can demand further investigation (right).

ABSTRACT

Visualizing time-varying data defined on the nodes of a graph
is a challenging problem that has been faced with different ap-
proaches. Although techniques based on aggregation, topology,
and topic modeling have proven their usefulness, the visual anal-
ysis of smooth and/or abrupt data variations as well as the evolu-
tion of such variations over time are aspects not properly tackled
by existing methods. In this work we propose a novel visualization
methodology that relies on graph wavelet theory and stacked graph
metaphor to enable the visual analysis of time-varying data defined
on the nodes of a graph. The proposed method is able to identify
regions where data presents abrupt and mild spacial and/or tempo-
ral variation while still been able to show how such changes evolve
over time, making the identification of events an easier task. The
usefulness of our approach is shown through a set of results using
synthetic as well as a real data set involving taxi trips in downtown
Manhattan. The methodology was able to reveal interesting phe-
nomena and events such as the identification of specific locations
with abrupt variation in the number of taxi pickups.

Keywords: Time-varying data, graph wavelets, stacked graph vi-
sualization

1 INTRODUCTION

With the proliferation of sensors and monitoring tools, ever increas-
ing amounts of data are made available for analysis and exploration.
Often, this data can be expressed as a signal over a graph structure.
Such abstraction is very flexible, capable of expressing complex
spatial relationships with time-varying information. However, iden-
tifying relevant events and phenomena from spatio-temporal data is
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not straightforward, rendering the visual analysis indispensable for
uncovering hidden patterns and their evolution over time.

An example of such task is the exploration of taxi activities data,
revealing general spatial and temporal patterns of behavior as well
as regions of disrupture such as an abrupt increase or decrease in
the number of pickups in certain areas, indicating the occurrence of
some event in those areas. Both patterns of information can be use-
ful to optimize the taxi service and monitoring the city as a whole.

Although many techniques have been proposed for analyzing
time-varying data, there are important aspects not properly tack-
led by existing methods. For instance, identifying regions and time
intervals of abrupt and/or smooth variation of a function while visu-
ally tracking the evolution of those patterns over time is not an easy
task for most visualization techniques. A sudden temporal variation
in a function can indicate the appearance of an unexpected event or
a change in the behavior of a given phenomenon. Analyzing func-
tion variations over time allows for understanding the periodicity of
such variations. Therefore, providing users with effective tools for
visualizing functions variations is of great importance.

Wavelet theory is a powerful mechanism for analyzing local vari-
ations of functions, widely employed in pattern recognition, data
compression, and signal filtering. Recently, it has been extended
to graphs, e.g. [10, 17], opening a multitude of application possi-
bilities, from transport network analysis [13] to community detec-
tion [19]. However, directly interpreting wavelets coefficients is not
trivial, requiring expert knowledge. Combining wavelet theory with
visual analytic tools is a practical alternative for non-specialized
users, allowing the effective analysis of time-varying data.

In this work we propose a novel visual analytic methodology for
the analysis of time-varying data that combines graph wavelets, pat-
tern recognition/classification, and stacked graph visual metaphor
in a linked view visualization that allows for the analysis of lo-
cal and global data variation. By properly handling wavelet coeffi-
cients as feature descriptors for classification, the method removes
the need for specific knowledge of the particularities of the trans-
form and is able to reveal regions and time intervals with similar
dynamic, regardless of their spatial and temporal distance. The pro-
vided results and case study show the effectiveness of the proposed



methodology in highlighting regions of abrupt and mild data varia-
tion as well as how those variation evolve over time.

In summary, the main contributions of this paper are:
• A novel method for the visual analysis of time-varying data de-

fined on the nodes of a graph which combines graph wavelets,
pattern recognition/classification, and stacked graph metaphor.

• A methodology to classify graph nodes based on their wavelet
coefficients that enables spatial and temporal visual analysis of
data variation.

• Results using synthetic data and a real case study that show-
case the capability and potential of the proposed visual analytic
tool in revealing interesting phenomena and events from mas-
sive time-varying data, including Citi Bike rents (in the supple-
mentary material) and taxi trips in downtown Manhattan.

2 RELATED WORKS

We focus this section on visualization methods for time-varying
data defined on graphs. The literature about time-varying data vi-
sualization is extensive and comprehensive surveys can be found in
the works by Aigner et al. [1], which approaches spatio-temporal
methods for general data visualization, and Kehrer and Hauser [12],
which discusses visual analysis methods for multifaceted data.
While those surveys are not focused on visualization of func-
tions/signals on graphs, they can provide insights about spatio-
temporal methods. The visualization of dynamic graphs [3] is also
a related problem, but with different characteristics, since not only
the data associated with the graph evolves with time, the structure
of the graph is allowed to change as well.

Time-varying visualization A popular application for time-
varying information defined on graphs is in the study of urban data.
Ferreira et al. [8] uses the start and end information of taxi trips to
explore urban mobility, introducing an efficient storage manager to
deal with large volume of data. The method is capable of handling
different queries such as trips that begin on downtown Manhattan
and end at the airports. However, the exploration of changes in the
information is not fully developed, providing only a plot of total
events and the juxtaposition of geographic renderings for different
time slices. Doraiswamy et al. [7] consider the same kind of data
as our case study, proposing a method to support event-guided ex-
ploration of large urban data. The problem is approached through
topological tools and is able to detect events of different scales and
shapes. Detected events can be used as a parameter for querying,
however, the method does not provide details on the temporal evo-
lution of the information not detected as an event.

Wang et al. [20] also consider taxi tracking information that is
filtered and matched to road networks. This information is used
to calculate trajectories and create propagation graphs of the traffic
information. Velocity in each road can be viewed as a timeline-
based layout or using a geographical map. The propagation graphs
are used to show concise information about detected events, specif-
ically how the traffic jams propagate. In contrast to our approach,
their pixel-based layout does not provide an efficient way to observe
patterns of change in the information. Zeng et al. [21] study the
visualization of interchange patterns between defined locations, in-
troducing the concept of interchange circos diagrams. The method
uses juxtaposition of diagrams to explore temporal changes. Since
the method is based on multi-scale information aggregation, users
have to interactively explore the information throughout different
scales, that can hinder the detection of small anomalies. Such re-
marks can also be made for the work proposed by Andrienko and
Andrienko [2], where data aggregation methods are used to ex-
plore trajectory-oriented and traffic-oriented views of movement
data, going beyond the usual spatio-temporal aggregation schemes
by considering direction and route information. Since they over-
lay the pixel-based traffic information into the map, only the coarse

geographical information is kept during visualization.
Pu et al. [15] present a system for visualizing mobility patterns

based on phone call information. The visualization is based on a
Voronoi diagram computed from cellphone tower location, allow-
ing the analysis of people migration between different towers, de-
picted on the edges of the diagram. A similar approach was used
by Sun et al. [18] to analyze temporal information using roads of
a map as a graph. The time-varying information is associated with
the edges of the graph rather than the nodes. The main advantage
of Pu and Sun methods is the ability to correlate spatial and tem-
poral information. Such methods are not suitable, though, for large
graphs. Handling levels of detail is not also a straightforward task.

A quite different approach is proposed by Chu et al. [5], where
geographic coordinates are transformed into street names, therefore
the trajectory of a particular taxi can be expressed as a document
and the data set itself as a document corpora, allowing to process
the data through nature language processing tools such as Latent
Dirichlet Allocation. Data variations are expressed through changes
in the “taxi topics” and depicted using a set of alternative plots.
However, the visualization is focused on the taxi topic information,
thus raw information such as the concentration of taxis in specific
position and time can not be directly visualized.

Guo et al. [9] introduce a visualization system called TripVista,
aiming the exploration of microscopic traffic patterns and abnor-
mal behaviors, such as traffic on a particular street junction. The
method involves, along with other visualization techniques, a time-
line visualization derived from Theme-River [11], but enriched with
directional information. While this approach is capable of identi-
fying underlying patterns, outliers, and abrupt changes in the data,
it is not directly scalable to macroscopic patterns and can not dis-
criminate changes according to the frequency of the signal.

Graph Wavelets Since our approach relies on graph wavelets, we
also review some literature about techniques that relies on graph
wavelets to analyze data defined on the nodes of a graph [10].
Crovella and Kolaczyk [6] proposed a methodology based on graph
wavelets for monitoring information on a network. However, the
problem is approached in a purely spatial manner, disregarding
temporal variations. Mohan et al. [13] make use of wavelets on
graphs to detect disruptive traffic events on transportation networks.
Wavelet coefficients are used to detect speed patterns, such as con-
gestions, low traffic, or rush hours, including the duration of such
events. However, since the focus of the article is not visual analysis,
the visualization provided is limited to simple plots of the magni-
tude of the coefficients, ignoring the structure of the graph. Indeed,
while the authors claim the study comprises several expressways
and roads, the provided results consider only a single road at a time,
for sake of simplicity in visualization.

In contrast to methods above, our approach makes use of graph
wavelets theory to explicitly visualize the evolution of data varia-
tions in multiple scales, enabling the visualization of low and high
frequencies patterns over time. Our method relies on linked views
composed of traditional graph plots and stacked graph metaphor,
being able to handle a large amount of data. The provided linked
views allow the simultaneous visualization of spatial and temporal
data variation for both large and small events, a trait not present in
most of the time-varying visualization techniques described above.

3 SPATIO-TEMPORAL WAVELETS ANALYSIS ON GRAPHS

The proposed methodology for graph-based spatio-temporal data
analysis comprises four main steps (see Figure 2): graph wavelets
transform, feature vector construction, feature vector classification,
and visual representation. Before describing the graph wavelets
transform theory, the basis of our methodology, we introduce some
basic concepts and notations that are important in this context.
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Figure 2: Our methodology comprises four main steps: graph
wavelets transform which provides the coefficients for feature vector
construction. After classifying the feature associated to each node
the visual analysis takes place.

3.1 Mathematical Preliminaries
An undirected graph G = (V,E) consists of a set of n nodes V and
a set of edges E connecting pairs of nodes in V . A graph G can
be represented by an n×n symmetric matrix A (adjacency matrix)
with entries ai j = 1 if only if there is an edge in E connecting the
nodes τi,τ j, i 6= j, and ai j = 0 otherwise. The Laplacian opera-
tor L in G can be defined as L = D−A, where D is the diago-
nal matrix with entries dii = ∑

n
k=1 aik. Since L is a real symmet-

ric semi-positive definite matrix it admits an eigendecomposition
with real non-negative eigenvalues λ j and corresponding orthog-
onal eigenvectors u j, j = 1, . . . ,n (see [4] for details). Assuming
that the nodes are numbered, we denote by u j(i) the value of u j in
the node τi of G. By analogy to the continuous Laplacian operator
where eigenfunctions and eigenvalues are the Fourier modes and
frequencies respectively, the u j and λ j , j = 1, . . . ,n are considered
as graph Fourier modes and frequencies. Therefore, small values of
λ j correspond to low frequency modes while large values indicate
high frequency modes.

Any real valued function f : V → R that assigns a scalar to each
node of G can be interpreted as a vector in Rn. The scalar value in
the node τi is given by the ith entry f (i) of the vector f ∈ Rn. The
graph Fourier transform of f at the frequency λ j is defined as:

f̂ ( j) = u>j f =
n

∑
i=1

u j(i) f (i) (1)

where u>j is the transpose of u j. In words, Equation (1) says that
the jth graph Fourier coefficient of f is given by the dot product
between f and u j. We refer readers to [16] and [22] for a detailed
description of graph Fourier transform and its properties.

3.2 Spectral Graph Wavelets
The central idea of graph wavelet transform is to reinterpret a func-
tion as a composition of different functions of known behavior. By
analyzing their contributions, we can gain insights regarding the
behavior of the original function. For instance, if the largest contri-
bution is made by a slowly changing function, we can infer that the
original function is mostly smooth. Conversely, a rapidly changing
function would have a significant contribution of similarly abrupt
functions. Moreover, it can identify abrupt changes in a milder
function, potentially discerning different phenomena.

The graph wavelet transform decomposes a function f in terms
of basis functions {ψs,1, . . . ,ψs,n} where each ψs,i depends on a
scale s and a location τi. An interesting aspect of wavelets is that
projecting the function f onto spaces with different scales is equiv-
alent to band-pass filtering the function f , that is, each scale corre-
sponds to a specific band-pass filter.

Recalling that the eigenvalues λ j correspond to frequencies in
the graph Fourier domain, we can define band-pass filters by prop-
erly handling the eigenvalues λ j according to scales s. Denoting by
g a filter kernel defined on R+, the graph wavelet basis functions at
a positive scale s and location τi (ith node) can be defined as [10]:

ψs,i =UDgU>δi (2)

where U is the matrix whose columns are given by the eigenvectors
u j, δi is a vector with 1 in the ith entry and zero in all other en-
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Figure 3: Band-pass filters at five scales.

tries, and Dg = diag(g(sλ1),g(sλ2), . . . ,g(sλn)) is a diagonal ma-
trix representing the band-pass filter. Wavelet coefficients at scale s
and node τi are obtained through the dot product

ω f (s, i) = ψ
>
s,i f (3)

The rationale behind Equation (2) is that for small values of s
(small scales), the filter g stretches out so as to favor high fre-
quency modes essential to good localization. Large values of s
(large scales) compress the function around low frequency modes
to encode coarser description of a local neighborhood. Formally, g
is defined as follows:

g(x) =


x−α

1 xα for x < x1
p(x) for x1 ≤ x≤ x2

xβ

2 x−β for x > x2

(4)

where α,β ,x1,x2 are parameters of the filter that can be tuned to
change the behavior of g. Function p(·) is a cubic polynomial satis-
fying p(x1) = p(x2) = 1, p′(x1) = α/x1, and p′(x2) =−β/x2. The
scales are logarithmically sampled between smin = s1,s2, . . . ,sm =
smax, where smin = x2/λn (λn is the largest frequency in the spec-
trum) and smax = 20x2/λn. The provided formulation is based on
the work by Hammond et al. [10], but we are presenting it using
a more linear algebra notation for easier interpretation. Interested
readers should refer to [10] for a thorough mathematical description
of graph wavelets and their properties. In our implementation we
set all the parameters as suggested in [10], α = β = 2,x1 = 1,x2 =
2. Figure 3 illustrates the band-pass filter g in five distinct scales.

3.3 Time-Varying Data
The graph wavelet formulation presented in previous subsection
was designed to process real functions with no temporal variation.
A natural way to extend the theory to process time-varying data is
through the so called Cartesian product graph.

Let G = (VG,EG) and H = (VH ,EH) be two graphs
and τi and ι j be nodes in VG and VH , respectively.

G

G×H

H

The Cartesian product between G
and H is the graph G×H with node
set VG ×VH and edges connecting
two nodes (τi, ι j) and (τk, ιl) if only
if either τi = τk and ι j is adjacent to
ιl in H, or ι j = ιl and τi is adjacent
to τk in G. The particular case where
H is a linear graph is of special in-
terest in our context, as the Cartesian
product G×H can be seen as copies
of G stacked according to the nodes
of H.

Let G = (VG,EG) be a graph and f : VG × [a,b] → R be a
time-varying function that assigns, for every time t in the interval
[a,b], a real scalar to each node τi ∈ V . Assuming a discretiza-
tion a = t1 < t2 < · · · < tr = b for the interval [a,b], we can define
the Cartesian product graph G×H, where H is a linear graph with
nodes VH = {ι1, ι2, . . . , ιr} and edges EH = {eii+1 = ιiιi+1}, i =
1, . . . ,r− 1. Therefore, the time-varying function f can naturally
be extended to G×H through the function fG×H : VG×VH → R
such that fG×H

(
(τi, ι j)

)
= f (τi, t j).



The main advantage of extending a time-varying function as de-
scribed above is that fG×H is a “steady” function on the nodes of
G×H, therefore, the graph wavelet theory presented in subsec-
tion 3.2 can be directly employed to analyze fG×H . However, the
number of nodes in G×H increases as nr, thus, even for moderate
values of n and r, the size of G×H and the corresponding Laplacian
matrix can be considerable, hampering the computation of eigen-
values and eigenvectors. Nevertheless, the spectrum of Cartesian
product graphs has the particular property of being derived from
the spectrum of G and H, making unnecessary the construction of
the Laplacian matrix associated to G×H. Precisely, let u j , λ j be
the eigenvectors and eigenvalues of G and vk, µk be the eigenvec-
tors and eigenvalues of H, then λ j + µk is an eigenvalue of G×H
and w jk = u j ⊗ vk the corresponding eigenvector, where ⊗ is the
Kronecker product [4]. Computing the spectrum of G×H from the
eigenvalues and eigenvectors of G and H makes the use of graph
wavelet theory feasible for handling large time-varying data.

3.4 Node Classification and Stacked Graphs
Let fG×H : VG×VH → R be the extension of a function to a Carte-
sian product graph G×H. We denote by ω fG×H (s, i, j) the wavelet
coefficient of fG×H at scale s, and location (τi, ι j), as described
in equation (3). If scales are discretized as smin = s1,s2, . . . ,sm =
smax, then each node (τi, ι j) of G×H can be associated to an m-
dimensional feature vector with attributes given by the wavelets
coefficients wi j = (ω fG×H (sm, i, j), . . . ,ω fG×H (s1, i, j)), where large
scales are placed on the left and small scales on the right of wi j.

For small scales, wavelet coefficients tend to be high in regions
of the graph where f varies abruptly. On the other hand, for large
scales, wavelet coefficients with high magnitude tend to appear in
regions where f has a “smoother” behavior. Therefore, one can
characterize each node of G×H according to the distribution of
wavelet coefficients in its feature vector. More precisely, if wavelets
coefficients of a node (τi, ι j) assume larger values in small scales
(on the right part of wi j) then that node is located in a region of
abrupt variation of fG×H , and we will call (τi, ι j) a high frequency
node. If the coefficients are more concentrated in large scales (on
the left part of wi j) then the node is located in a region of smoother
variation and it will be called low frequency node. In our experi-
ments we have noticed that four scales is enough to reveal interest-
ing phenomena, being the number of scales employed henceforth.

Node classification Each node (τi, ι j) can be classified according
to the distribution of coefficients in its feature vector wi j , allowing
the identification of high and low frequency regions in the graph
and the visualization of how those regions evolve over time.

Classification can be performed through pattern recognition
mechanisms commonly employed by the machine learning commu-
nity. In this work we choose the pattern recognition neural network
(PRNN) classifier [14], due to its reduced computational times and
satisfactory performance in terms of classification. PRNN is a su-
pervised classification method, thus demanding a training set in or-
der to fit the classification model. Assuming that the feature vec-
tors are four dimensional, each wi j is built from four scale levels,
we generate a training set made up of five classes, as illustrated
in Figure 4. Feature vectors in the low frequency class has wi j(1)
as the dominant attribute (Figure 4, dark blue bars); wi j(2) is the
dominant attribute in the mid-low frequency class (Figure 4, light
blue bars); wi j(3) and wi j(4) are the dominant attributes in the mid-
high (Figure 4, orange bars) and high frequency (Figure 4, red bars)
classes, respectively. Feature vectors with no dominant attribute
characterize the indeterminate class (Figure 4, yellow bars). We
simulate feature vector patterns in each class to serve as training
data for the classification method. The training set was generated
with one thousand samples per class, thus comprising a data set
with five thousand elements. Figure 4 illustrates ten samples from
each class generated by our training data simulator. The simula-

H
IG
H

LO
W

IN
D
ET

ER
M
I.

0

0.5

1

0

0.5

1
0

0.5

1
0

0.5

1
0

0.5

1

Figure 4: Four dimensional feature vectors: from top to bottom high,
mid-high, mid-low, low and indeterminate frequency classes. Each
row depicts ten examples of feature vectors in each training class
and the bars correspond to the magnitude of each attribute.

20
15

01
 A

M

02
 A

M

03
 A

M

04
 A

M

05
 A

M

06
 A

M

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

LOWMID-LOWMID-HIGHHIGH INDETERMINATE

Graph signal Wavelet coe�cients

Stacked graph

Figure 5: Top row: a function f in a time instant (left) and feature
classification (right) regions of low, high and indeterminate. Bottom
row: stacked graph illustrating the temporal evolution.

tor was designed to mimic coefficient patterns we observed in real
and synthetic data sets. Figure 5 shows a specific time-frame of a
synthetic time-varying data (left-top) and regions of low, mid-low,
mid-high, high and indeterminate frequencies (right) classified with
the PRNN after a training step with simulated training data.
Stacked graph For each time ti, we can count the number of nodes
that belong to a specific class in that time. More specifically, let C
be one of the five classes defined above and (τi, ι j)C be a node in
C. For each time-instant tk, the set of nodes Ctk = {(τi, ι j)C | j = k},
corresponds to the nodes in VG× ιk that belongs to C. Therefore,
we can apply a stacked graph metaphor to visualize the number of
nodes in each class in the time ti, i = 1, . . . ,m, which allows us to
visualize how classes evolve over time. Figure 5 (left-bottom) illus-
trates the proposed visualization. Each horizontal strip represents a
class, colors discriminate the class types, and the thickness of each
strip accounts for the number of nodes in each class in each time
ti. The highlighted (vertical bar) instant in stacked graph corre-
sponds to the time slice depicted in right figure. The stacked graph
metaphor allows for easily identifying time intervals where a func-
tion f varies abruptly or presents low levels of variation, assisting
in the analysis of f over time.

3.5 Computational Times
The bottleneck of our algorithm is the calculation of wavelets coef-
ficients (Eq. 3). The coefficients are computed from eigenvectors
and eigenvalues of the graphs G and H. We use LAPACK to com-
pute the spectrum of both graphs, where the routine used has overall
complexity O(n3). Since the spectrum of G×H is can be derived
from the spectrum of graphs G and H using the Kronecker prod-
uct and sum of eigenvalues, asymptotic complexity to compute all
eigenvectors and eigenvalues of G×H is O(n2r2 +n3 + r3), where
n and r are the number of nodes in G and H respectively.



Figure 6: Screenshot of our prototype interface which comprises a
stacked graph visualization (top left), threshold slide bar for wavelets
coefficients (middle left), average feature vector in each class (bot-
tom left), graph map depicting node labels and function intensity in
specific time slice (top right), and time series of a node (bottom right).

4 VISUAL ELEMENTS AND LINKED VIEWS

Figure 6 shows the interface of our prototype applied to a synthetic
data set. The stacked graph-based visualization is depicted on the
top left of the interface. From the stacked graph its possible to see
that the amount of variation in the data increases initially, remains
stable, then decreases. The data does not present time variation in
the middle of the time domain, but there are nodes with non-zero
coefficients due to spatial variation. By changing the slider under
the stacked graph we can control the minimum value of the coeffi-
cients to be considered during visualization, hiding noises or events
of smaller magnitude, that can be interpreted as less significant.

Nodes with the same classification are grouped and depicted with
a specific color that encodes their frequency class. The average pat-
tern of coefficients in each class is shown in the bottom left area
of the interface. From the stacked graph, we can see that the vari-
ation on the data is predominantly of low-frequency, happening in
more than 50% of the nodes. High and mid-high frequencies take
place in about 20% of the nodes. From the small amount of ver-
tices classified as high-frequency, we can infer that high-frequency
events happen along the time, but they are spatially small. In this
specific data set, detailed in Section 5, the time-varying information
was designed to alternate between zero and one in specify regions
and time intervals of the graph, but the region where the change
happens is large and the underlying function remains constant for
enough time to be expressed using lower frequencies, making high
frequency coefficients to show up only in a small number of nodes.

The stacked graph visualization is linked to a time slice visu-
alization depicting function intensities and nodes classification, as
shown on top right in Figure 6. A time slice is selected from the
stacked graph by placing the mouse on a specific time. Each node
in that time interval with coefficients higher than a threshold (set in
the slide bar) is colored according to its classification.

By clicking on a node one can access the corresponding feature
vector and function value for that node. Moreover, the time series
associated with the selected node is presented on the bottom right
area of the interface, allowing the users to visualize how the data
varies in that node over the whole period of time. The color of the
line corresponds to the classification of the node at that time, or
gray when the magnitude of the coefficient is below the threshold.

5 VISUAL ANALYTICS WITH GRAPH WAVELETS

In the following we show the usefulness of the proposed combi-
nation of graph wavelets, pattern classification, and stacked graph
when analyzing the given synthetic data. We consider an event as
any portion of the domain where one can notice a variation, even
subtle, in the data under analysis. This definition is quite general
and can be adapted to many different contexts. In this section, we
consider a synthetic data set containing six distinct events of dif-
ferent sizes, time intervals, and durations. These differences were
designed to explore the behavior of the method considering events

Graph Signal

Wavelet Coe�cients

(h)(g)(f)(e)

(d)(c)(b)(a)

Figure 7: Coefficients and raw data for four distinct time slices. Top
row: Coefficients, bottom row: respective raw data.

that are small or large, abrupt or mild, brief or lengthy, and the
interaction between nearby events. The time-varying function do-
main is a graph with 716 nodes and 50 time slices, giving rise to a
Cartesian product graph with 35,800 nodes. The system prototype
was implemented in JavaScript and the data has been pre-processed
in a regular desktop computer, equipped with an i7 Intel processor
and 8Gb of RAM, in order to compute wavelets coefficients in each
node of the Cartesian product graph. The pre-processing step for
this particular synthetic data set took approximately 8 seconds.

Figure 7 shows two sets of time slices from our synthetic data set.
Specifically, Figures 7(a) and 7(b) correspond to the classification
of nodes in two adjacent time slices t5 and t6, while Figures 7(c)
and 7(d) show node classification in non-consecutive time slices ti
and t j. Figures 7(e), 7(f), 7(g), 7(h) depict the function in the same
time slices as in Figures 7(a), 7(b), 7(c), and 7(d), respectively.

Figure 7(a) shows the nodes classified according to their wavelet
coefficients in time slice t5. Even though the function has no value
in that time slice (all nodes are gray in Figure 7(e)), wavelets coeffi-
cients are non zero, indicating that some temporal variation should
take place in adjacent time slices. Moreover, nodes are mostly in
orange class, meaning that a mid-high frequency variation is about
to happen in that region. In summary, Figures 7(a) and 7(e) point
out that the data should present an abrupt temporal change from
time slice t5 to the adjacent slices, what is attested when analyz-
ing Figures 7(b) and 7(f) referring to time t6. Notice from Fig-
ure 7(b) that several nodes in the middle of the event becomes low-
frequency (blue nodes), surrounded by yellow and orange nodes,
indicating a spatial and temporal stability in the center of the event
from time slice t6 to the following slices. The nodes on the border of
the event are mostly medium-high frequency, with some high fre-
quency nodes. Those high, mid-high frequency nodes are mainly
caused due to spacial variation of the data. Nodes classified as in-
determinate indicates that both low (mid-low) as well as high (mid-
high) frequencies are present in those nodes due to the simultaneous
temporal and spacial variability. The reason is that the event is large
enough to be captured by low frequency wavelets.

It is also easy to see that a new region with light-blue nodes ap-
pears in Figure 7(b), indicating a variation from t6 to the following
time slices in that region. However, those nodes belong to the mid-
low frequency class, meaning that either the function variation is
not so “severe” in that region or the data variation will not take
place exactly in t7 but in the following time slices. By clicking in
one of the nodes in the new blue region we can visualize its cor-
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Figure 8: Time series of a node in the blue region in Figure 7(b).

responding time series, with the current time depicted as a dashed
vertical line, as depicted in Figure 8. From the time series it is easy
to see a function variation from time slice t8.

Figures 7(c) and 7(g) show another time slice. Coefficients in the
middle of the largest events are dominated by low frequency nodes,
while nodes in the border tend to be mid-high frequency nodes.
Some nodes that are never part of an event are also classified as mid-
low frequency, indicating their spatial proximity to other events.
However, not all nearby vertices have coefficients above the chosen
threshold, so they remain hidden. The time slice just after the end
of the largest event is presented in Figures 7(d) and 7(h). Similarly
to what happened in Figure 7(a), mid-high frequency nodes indicate
a new temporal change related to the vanishment of event.

The discussion above shows the effectiveness of our methodol-
ogy in revealing events in a time-varying data. The usefulness of
our tool in analyzing real data is discussed in the next section.

6 CASE STUDY

In this section, we present a case study where our methodology is
used to explore real urban data. The data was provided by the NYC
Taxi and Limousine Commission, containing information about the
taxis themselves, the drivers, the amount of passengers, the pickup
and drop-off times, the duration and distance of the trips, and geo-
graphical information for the pickups and drop-offs. We consider
only the location and time of the taxi pickups, from August 11th,
2013 to August 18th, 2013. The study considers downtown Man-
hattan - NY, which is expressed as a graph, where nodes represent
street intersections and edges represent the streets connecting them.

In this context, nodes classified as low frequency correspond to
locations where the amount of taxi pickups around that intersection
changes mildly, in space and time. In contrast, a higher frequency
node implies that there is an abrupt change in a nearby location or
time. Notice that this relationship does not involve the number of
pickups, but the relative change. Consider, for instance, two distinct
locations, one with an average of 100 pickups per interval, another
with an average of 5. If both locations experience an increase of
10 taxis per interval, the first location would be considered as low
frequency, and the second would be classified as high frequency,
because of the abrupt relative change in the number of taxi pickups.

Figure 9 depicts the stacked graph of one week of taxi trips, from
August 12th to 18th, 2013. Each day was discretized in periods of
thirty minutes, or 336 time slices, leading to a Cartesian graph with
1,577,184 nodes. The pattern of pickups of each day is clearly rep-
resented, with a significant decrease on the 18th. Moreover, there
is a clear difference between night and day periods, for during the
night the number of taxi pickups increases considerably.

Comparison between day and night patterns reveals a decrease
between 4pm and 5pm, but the amount varies for each day of the
week, from a slight reduction on Monday to a very accentuated
valley on Friday. The time in which the number of taxi pickups
declines at the end of the night also varies, going from 11pm on
Monday to 4:30am on Friday and 4am on Saturdays. Although
the decline happens later on Friday, our linked view reveals that
the amount of locations with significant taxi pickups at the same
period decreases, thus keeping the total of affected nodes roughly
the same, as one can clearly see by comparing the shape of Fri-
day against Thursday of Wednesday. Sunday has less trips, evenly
distributed among the period.
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Figure 9: Stacked graph visualization of taxi pickups from August
12th to 18th. A large number of taxi trips happen at night.

Considering the classification of nodes, we see a predominance
of low frequency, representing smooth spatio-temporal changes in
the number of taxi pickups, even at 5pm, where we have a clear tem-
poral change. Therefore, we can assume that this temporal varia-
tion on the number of pickups also occurs as a large, uniform event,
that can be characterized as low frequency. In other words, while
the number of taxi trips rapidly increases at 5pm, it does so in a
large part of the Manhattan graph domain, in a mild manner, with-
out many locations with more abrupt changes. However, there are
also nodes classified as high or mid-high frequency, pointing some
abrupt variation in the number of pickups at specific locations of the
map. The stacked graph reveals that the number of such locations
is small compared to the number of low frequency nodes. In less
mathematical terms, the number of regions facing an abrupt change
in the number of pickups is small compared to regions where the
number of pickups changes smoothly.

Our interactive exploration tool allows users to select a time in-
terval in the stacked graph and the linked view reveals the density
and the variation of pickups in that particular time interval on Man-
hattan map. Following the patterns displayed in the stacked graph,
we start by exploring the start of the Monday morning rise, which
has particular interest, representing a potential rush hour. Figure 10
illustrates the classification of nodes and the density pickup func-
tion for four different time slices. The first column represents the
time slice from 7:30am to 8am, August 12, 2013. There are some
taxi pickups in most of the downtown Manhattan, but the method
identified regions of particular changes around the Port Authority
bus terminal on 42th street (purple marker 1), Penn Station (2), and
at the corner of Liberty street and South End Avenue (3). While
the large amount of taxi pickups around two the busy public traf-
fic hubs of New York City are expected, and clearly visible in the
density map (top row), the third identified location is curious. The
density value associated to that node is lower than in most nodes in
the map, but different enough of the local pattern to be identified
as a more significant change. We can select this node by clicking
on it, which will highlight the node and display the corresponding
time series, as is illustrated in Figure 11, where the color of the line
corresponds to the classification of the node in each time slice, or
gray if below the current threshold. There are visible peaks in the
number of taxi pickups during the morning in weekdays. While the
value of the function at such peaks is not very high, corresponding
to less than a taxi pickup per minute, they represent a clear change
in the local dynamics of this particular region.

We identified that this location is close to the WFC Ferry Station,
which explains the increase of taxi pickups during the early morn-
ing in weekdays. However, this is not the closest street to the Ferry
Station, representing a walk of approximately 500 meters, whereas
the distance between the Ferry Station and River Terrace, or Vesey
Street, is less than 300 meters. Contrarily of River Terrace, the cor-
ner of Liberty street and South End avenue has more convenient
parking space for taxis waiting for fares. We postulate that passen-
gers from the ferry prefer a longer walk on the esplanade to arrive
in a location where they know there would be available taxis.
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to 11pm (mid-left); August 16, 2013, 7:30pm to 8pm (mid-right); and August 17, 2013, 1:30am to 2am (right).

M
on

 1
2

Tu
e 

13

W
ed

 1
4

Th
u 

15

Fr
i 1

6

Sa
t 1

7

Au
g 

18

Vertex Signal
07:30 - 08:00

150
100

50
0

Figure 11: Time series associated to the node representing the in-
tersection of Liberty street and South End avenue.

The second column in Figure 10 illustrates the period from
10:30pm to 11pm, Tuesday, August 13, 2013, corresponding to sec-
ond peak of taxi pickups on Tuesday night. There is an increase
around Times Square (4), reflecting the nightlife activity. The high-
lighted node corresponds to the intersection of 50th street and 8th
avenue, near several theaters. Our visual analytics method also
identified two locations where the number of pickups changed in
a more abrupt manner, one in Tribeca and another near Nolita (or-
ange nodes in the south). While there is a change in these locations,
we found no obvious explanation for those peaks.

The third column in Figure 10 shows the period from 7:30pm
to 8pm, Friday, August 16, 2013, corresponding to the peak in the
number of pickups that happens separating the afternoon and the
evening. While the number of pickups around Port Authority bus
terminal (1) and Penn Station (2) remain significant, there is an
increase in the Midtown east area (5), an area with several high-end
hotels. Therefore, we believe that such increase is related to the
guests of such hotels leaving to enjoy the nightlife on Friday.

The fourth column in Figure 10 illustrates the period from
1:30am to 2am, Saturday, August 17, 2013, corresponding to an in-
crease in the amount of nodes classified as mid-high frequency, de-
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Figure 12: Time series associated to the node representing the node
highlighted in the fourth column of Figure 10.

picted in orange. We can identify regions with high concentration
of bars and restaurants, such as South Chelsea (6) and the Lower
East Side (7), along with four orange locations on 7th avenue, fol-
lowing the 1 and 2 subway lines (red line). We see some nodes with
more abrupt changes identified in the middle of the map, located in
the intersection of 21st street and 6th avenue (8). The time series of
the highlighted node is shown in Figure 12, from which one can see
an increase on the number of taxi pickups after midnight, on Fri-
days, Saturdays and Sundays, with almost two taxi trips per minute
starting nearby. We found no obvious explanation for such change
during the weekend. It is worth pointing out the effectiveness of the
proposed exploratory tool, allowing users to identify/select partic-
ular phenomena from the stacked graph which are then revealed in
detail on the maps by a linked view. Visual analysis of time series
associated specific node can also be accomplished by selecting it.

This case study showcases an important feature of our method,
its ability to identify significant changes in the function, regardless
of the magnitude of the associated data. Therefore, it can direct the
attention of users to the important changes without “contaminat-
ing” the visualization with higher magnitude data whose behavior
is more uniform. In other words, the method is capable of separat-



ing interesting changes from the usual evolution of the data, which
would otherwise require expert knowledge or a deeper analysis us-
ing behavioral models. This property render our methodology a
competing alternative for time-varying data analysis.

Another case study involving bike trips in Manhattan is de-
scribed in the supplementary material accompanying this paper.

7 DISCUSSION AND LIMITATIONS

The provided results and case study clearly show that our approach
is able to deal with large amounts of information, while allowing
the visualization of spatio-temporal events, regardless of their size.

The proposed classification scheme, based on simulated training
data, was satisfactory, enabling informative visualization and data
analysis. We attested the correctness of the classification by in-
specting the results against the corresponding feature vector. How-
ever, a more thorough verification method should be implemented,
specially for applications demanding a higher degree of confidence.

Other training data could also be employed to generate classes
with specific patterns. For instance, one could split the indetermi-
nate class in order to further discriminate nodes as to their tendency
to low or high frequencies, thus increasing the number of classes.
The ideal number of classes is application dependent, and several
distinct patterns could be revealed by tuning training data.

While the stacked graph plot was quite informative, it is not en-
tirely appropriate when the classes are unbalanced, where classes
with few elements can be difficult to visualize. However, this mi-
nority information can indicate outliers. Moreover, when a large
temporal interval is considered, the plot can become quite dense,
hindering the visualization of smaller variations in the classes.

There are additional issues when handling large data sets, as
real-time wavelets coefficients calculation can only be achieved for
small graphs. Even with the adopted mechanism to avoid the con-
struction of the Laplacian matrix for of whole Cartesian product
graph, computational times can still become a significant factor
when dealing with massive data. This cost can be reduced by aggre-
gating time slices in a coarser time discretization, as we did in the
case study. However, aggregation operates as a low-pass filter that
naturally disguises small temporal and spatial variations. A pos-
sible alternative for this issue is to incorporate focus-plus-context
data exploration, which we consider a relevant, but non-trivial ex-
tension of our methodology.

Another weakness of our approach is the difficulty of discrim-
inating spatial and temporal changes, considering only the graph
wavelets coefficients. Wavelets coefficients could be combined
with other information to perform such discrimination.

The limitations above are considered avenues for future work.
The provided results clearly show the usefulness and flexibility of
graph wavelets to support visualization tasks, encouraging a multi-
tude of further developments and investigations.

8 CONCLUSION

In this work we have proposed a novel visual analytic methodol-
ogy for analyzing time-varying data that combines graph wavelet
theory, pattern classification, and stacked graph visual metaphor in
a linked view visualization environment. The proposed method is
versatile, robust, and quite effective to reveal important events given
by variation in the data. The usefulness of the proposed methodol-
ogy was attested through a set of tests and a case study, rendering it
an attractive methodology for many visualization applications.
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