Infrastructures for Visual Analytics: You are in a maze of twisty little passages, all alike!

Jean-Daniel Fekete
Jean-Daniel.Fekete@inria.fr
www.aviz.fr

Issues

• VA combines data storage, indexing, analysis, exploration and dissemination through visualization
• When data is big and analyses are complex, interaction suffers from long computations and no guidance:
 – the human analytical process is hampered
• So far, software infrastructures issues have been addressed in ad-hoc ways by each application
• This is not sustainable, even in the short term
Current Solutions

- An InfoVis Team extends nice interactive visualizations with analytical capabilities and standard storage capabilities
 - Analysis algorithms are sub-optimal
 - Storage is ad-hoc
- A Machine-Learning Team extends nice learning algorithms with visualizations and storage
 - Visualization and interaction is simplistic
 - Storage is ad-hoc
- Same for Database Teams
Visualization do the Analysis

- Very nice visualization
- Sub-optimal algorithms or unreasonable amount of time spent
- Storage-agnostic
- What about:
 - Reuse?
 - Performance?
 - Scalability?

VizTree (Lin et al. 04)

- Transform a time-series into a string
- Transform a string/token into a tree branch
Machine Learning do the visualization

• Very nice model
• Sub-optimal visualization or unreasonable amount of time spent
• Storage-agnostic
• What about:
 – Reuse?
 – Performance?
 – Scalability?
Improved Solutions: Pairwise Collab.

- Database + Machine Learning
 - Very impressive (e.g. Google with the Cloud)
- Text Analysis and Information Visualization
 - Very promising
- Still, ad-hoc
 - Scalable?
 - Reusable?
 - Interactive?

The Problem

- No Agreed Reference Model for Visual Analytics
- Visual Analytics applications need to re-implement the algorithms, visualizations and interactions
- Complex components cannot be easily re-implemented
- Visualizations and interactions are poorly re-implemented
- Industry cannot sell components
Needs

• What are the needed capabilities?
 – Flexible storage / indexing
 – Asynchronous computation
 – Continuous notification of partial results
 – Steering of algorithms to work on “interesting” areas
 – Composition of hybrid algorithms
 – Assessments of the quality of analysis results (Rank algorithms by Feature?)

• How to assemble components?
 – Modularity
 – Separation of concern
 – Abstracting the wealth of hardware configurations

Domains Involved

• Data Management / Databases
• Analysis
 – Statistics
 – Machine-Learning
 – Text Mining
 – Image Analysis
 – Video Analysis
 – Graph Mining (e.g. social network analysis)
• Visualization
 – Infovis
 – SciVis
 – GeoVis
Software Reference Models

- **Databases**
 Data Management

- **Analysis**

- **Visualization**

The Visual Analytics Process

The Visual Analytics Process
Extended

WikiReactive

N. Boukhelifa, F. Chevalier and J.D. Fekete

- Collect wikipedia changes and computes derived information
 - Diffs, user contributions, user per character
HAL Deduplication framework

- For each article author added to the HAL database
- Computes similarity with all other authors
- Resolve simple case (< or > threshold)
- Show an interface for the other cases

Real-Time Sentiment Analysis

- For each new document scrapped
- Compute part-of-speech tagging, lemmatization, negation detection, feature extraction, sentiment detection, sentiment-to-feature mapping
Problem: Bounding Time and Quality

• Visualization is User Centric
 – Visualization will only show a small amount of data
 – Visualization need interactive time
 – How can we address the scale in interactive time?
• Analysis is Program Centric
 – Analysis will read data, process it and store its results in the end
 – Analysis will produce unbounded amounts of data in unbounded time
 – How can we get something in a bounded time?
• Databases is Data Centric
 – Databases will store and retrieve unbounded amounts of data in unbounded (but fast) time
 – How can we bound time with a specified level of quality?

Vision

• In the future, Visual Analytics will rely on **components** or **modules**
• The components will interoperate based on a reference model
 – Abstractly defined but implemented by several providers
• Need to avoid
 – “One system does all” (e.g. VTK)
 – Many fragmented/incompatible systems
• Need to go step by step
 – We need a Research Programme
Extending Reference Models

• The Visualization Reference Models
• The Data Management Reference Model
• The Data Analysis Reference Model

• Connecting Them Together

The InfoVis Reference Model
Extended

Illustration by J. Heer

Visualization and Visual Analytics

- Extend the pipeline to the left
 - Analytical components need to be integrated and controlled interactively
 - The results of analysis should be stored in the data repository iteratively/progressively
 - Data storage cannot remain “in-memory”

Can Visualization be Componentized?

- Yes
- Done in VTK
- Done in each of the InfoVis Toolkits
- Now, done on top of the Java InfoVis Toolkits
 - The Obvious Abstract Toolkit
Obvious History

- VisMaster WP4 organized a workshop in Paris, Dec 4-6 2008
- Invitation only
 - Already had 3 open workshops on Information Visualization Infrastructures
 - Wanted a “hand on” approach instead of sharing knowledge
 - 2 busy days with Academics and Industrials

- Outcome
 - Practical specifications (code.google.com/p/obvious)
 - High level discussions
 - Commitments to test and conform to it as much as reasonable
 - INRIA just hired an engineer for 2 years to develop and maintain the work: Pierre-Luc Hémery

- 12 participants
 - Baudel, Thomas (ILOG/IBM)
 - Favart, Christophe (BO/SAP)
 - Fekete, Jean-Daniel (INRIA)
 - Fisher, Danyel (Microsoft Research)
 - Heer, Jeffrey (Stanford Univ.)
 - O’Madadhain, Joshua (Google)
 - Piringer, Harald (VRVis)
 - Santucci, Giuseppe (Univ. Roma)
 - Smoot, Mike (UCSD)
 - Theus, Martin (Augsburg Univ.)
 - Weaver, Chris (Univ. of Oklahoma)
 - Wood, Jo (City Univ. London)

Lord of the Toolkits
One Toolkit to Bind Them All!

- Pierre-Luc Hémery hired by INRIA for 2 years to implement it
- Encapsulates the well-understood InfoVis Reference Model for Java Toolkits
- Currently encapsulates:
 - The InfoVis Toolkit (Fekete 04)
 - Prefuse (Heer 05)
 - Improvise (Weaver 05)
 - JDBC as Data Model

http://code.google.com/p/obvious
Vis/InfoVis/GeoVis Unification?

• There is no reason why the pipelines cannot be merged at various levels
 – Data, compositing, view, with brushing&linking

• More research is needed beyond juxtaposition of components
 – Embedding
 – Hybrids
 – Merging?

Missing Parts?

• Scalability
 – Unbounded data can arrive with VA
 – How to avoid flooding the user and the system
 – Aggregation becomes mandatory, coupled with a “Budget” model?

• Asynchronous Updates of Visualization
 – Data will arrive at any time due to dynamic computation or data collection
 – Analytical queries will take time to complete
Extending Reference Models

• The Visualization Reference Models
• The Data Management Reference Model
• The Data Analysis Reference Model
• Connecting Them Together

Data Management and Visual Analytics

• Several layers of storage semantics
 – Flat files, XML, HFS, SQL Databases, NoSQL, Storage on the Cloud
• Services
 – ACID (Atomicity, Consistency, Isolation, Durability)
 – Persistence
 – Indexing
 – Distribution
 – Typing
 – Notification
 – Interactive Performance
 – Computation
Data Management Services for VA

- Persistence
 - Required
- ACID
 - Required but Atomicity needs extensions
- Indexing
 - Required by Visualization
- Distribution
 - Useful for Data Management, Analysis and Visualization
- Typing
 - Required
- Notification
 - Required by Visualization
- Interactive Performance
 - Required by Visualization
- Computation
 - Required by Analysis and Visualization

Data Management for VA

- Reimplementing in-memory databases for Visualization is a waste of time and effort
- In a distributed system, the Database should be seen as the shared memory
- The main memory becomes a cache of the database
- Database people should do it, not Vis people
Experiment: DBMS Caching with Obvious

- One binding of the Obvious data model is written with JDBC:
 - Allows to read tuples on demand from a DBMS table and store them in memory while they are used
 - Keeps a bidirectional link between memory and the DBMS
- What happened when the DBMS table changes?
 - A DB trigger is called
 - The Obvious table is notified that something changed
 - Changed data is read again (eagerly or lazily)
- Tested with Oracle and MySQL
 - Access time for Prefuse and IVTK are about 1ms for 100,000 items, 100 times faster than Oracle or MySQL

Database Issues

- Analysis frequently add attributes
 - Column oriented vs. Row oriented
- Transactions?
 - Yes
 - But extended (snapshot isolation, long transactions)
- Extended typing
 - Should be able to express the semantics of attributes beyond their representation type
- SQL?
 - Implementation issue but why not for queries
- Notification management
 - Should improve on the standard Trigger mechanism
- Indexing and Aggregation
 - More flexibility is required. Geospatial extensions have been specified, we need other extensions
- Fast bounded interruptible query management
What about Cloud and Big Tables?

- Visualizing data in the cloud
 - Scalability is limited!
- The Cloud is bad for interaction
 - High throughput/high latency
 - Perfect for the continuous loop or large model computation
- More work is needed to steer the computations in the Cloud

Extending Reference Models

- The Visualization Reference Models
- The Data Management Reference Model
- The Data Analysis Reference Model

• Connecting Them Together
Analysis Infrastructures

- Lots of high-quality Analytical components available
- New standards to perform Machine-Learning as a service (DMX or PMML, Google Prediction API)
- However, their reference model is VERY POOR
- How can we improve it?

Analytical Strategies

- Pre-computation and storage
 - Ad-hoc methods (run algorithms for a long time)
 - Cloud computing (BigTable + MapReduce)
- Iterative (Steerable) Algorithms
- Multi-resolution progressive algorithms
- Hybrid algorithms
- Incremental update strategies
Analytical Strategies: Iterative (Steerable)

- Lots of algorithms are implemented by iterative refinements
 - Image blurring, Force-based Graph Layout, MDS, TSP, PCA
- Let them pass the results of iteration steps
 - Maybe every second or so
- Some can be steered by the user’s viewpoint
 - Let them be dynamically steered

Analytical Strategies: Multiresolution

- Some algorithms can start with low resolution and increase it dynamically
- Graph Drawing, Image Transforms, etc.
- Let them pass the results when they are computed
- Allow them to be steered

Analytical Strategies: Hybrid Algo.

- Clustering a huge dataset?
- HC is quadratic: not possible
- K-Means is linear but requires a good K
- Sample -> HC -> Estimate good K -> k-Means
- Need a good sampling

Does not work well for Text mining

Analytical Strategies: Incremental update

- HC is made in two steps:
 1. Compute (di)similarity matrix
 2. Create clusters
- Step 1 is quadratic
- When items are added or deleted, updating the matrix is linear
- Keep the matrix!

- Same for several algorithms: store temporary computations that are expensive and updatable
Additional Problem

- Multiple existing analysis environments
 - R, Matlab, Excel, SPSS, SAS, etc.
- People are comfortable in their environment
- Lots of code already exists, sometimes substantial in size and complexity
- If we use them and pass the results between environments, the time is bounded by data transmission
- What should we do?
 - Integrate all the environments? (impractical)
 - Create a new one that will solve everything?
 - Find a way to lower the data transmission time (Data Management Issue)
Analysis: Summary

• Components should be restructured for interaction
• Who will do it?
• Hybrid algorithms can reuse existing components as they are but not the others
• Components need to expose their capabilities to the pipeline
• Expressing the interactive capabilities of components is a research issue
• Multiple environments will exist, how can we lower substantially the data transmission cost?

Extending Reference Models

• The Visualization Reference Models
• The Data Management Reference Model
• The Data Analysis Reference Model

• Connecting Them Together
Building VA Systems

• Coping with the diverse hardware and software solutions
 – Connecting parts from the huge and growing diversity
• We cannot rely on one software solution
 – We need to abstract the solution into a reference model and rely on it
• It can be done
 – VisTrails and Ediflow: workflow systems to connect and run VA dynamically

Scientific Workflow Systems

• Combining data management + computation + visualization
• Lots of ad-hoc Scientific Workflow Systems (e.g. Kepler)
• With (Sci) Visualization: VisTrails!
• Impressive system
 – Exploration + data provenance

www.vistrails.org
Workflow Systems

• Once the pipeline is componentized, it can be manipulated in a workflow system
• Currently, VisTrails relies on VTK
 – Work underway to work with Java/Jython and Obvious
• More work is needed
 – To add continuous manipulation to VisTrails
 – To hide the complexity to simple users
• Composing complex and powerful applications or prototypes should be made easier!
• Opportunities to separate the work specification from its implementation
 – Run locally, on a Cloud, on an HPC, etc.
Workflow for the Continuous Loop

- Specify the workflow, EdiFlow maintains data consistency by running the required modules when the data changes
 - Strategies to avoid useless costly recomputations

Summary for Infrastructures

- Visual Analytics Architectures are immature
 - They stretch the existing architectures far beyond their initial goals
 - They require complex functionalities and algorithms to be re-implemented over and over again

- We need to involve the specialists of the respective fields to solve the problems
 - Database researchers and practitioners are interested
 - Data Analysis researchers and p. are interested
 - Visualization researchers should meet too!
 - Workflows allow to connect components in a declarative way while maintaining analytic provenance

- Huge benefits in term of Research and Markets
Contributions

- **VisMaster collaboration:**
 - Thomas Baudel (IBM/ILOG)
 - Joe Parry (i2)
 - Harald Piringer (VRVis)

- **Dagstuhl Seminar on Information Visualization, Visual Data Mining and Machine Learning**

- **Dagstuhl seminar on Scalable Visual Analytics**