
Structuring Human-ML Interaction With an Immersive Interface Based on
Qualitative Coding

Johanne Christensen*

North Carolina State University
Ben Watson†

North Carolina State University

ABSTRACT

With ever increasing bodies of data, much of it unlabeled and from
complex, dynamic and weakly structured domains, machine learning
(ML) is more necessary than ever. Yet even domain experts have
difficulty understanding most ML algorithms, and so cannot easily
retrain them as new data arrives. This limits ML’s use in many fields
that sorely need it, such as law, where users must have confidence
in ML results. Interactive machine learning techniques have been
proposed to take advantage of humanity’s ability to categorize in
these complex domains, but little attention has been paid to building
interfaces for non-ML experts to provide input, and in particular to
creating a user experience that engenders trust. Qualitative coding -
the decades-old practice of manual classification - provides a proven
methodology that can be adapted to structure interaction between
domain experts and ML algorithms. Qualitative coders often use
physical props such as notecards to help sort through and understand
datasets. Here we explore how an immersive system can be built to
leverage QC’s intuitive techniques and grow a trusting partnership
between human and ML classifiers.

Index Terms: H.5.2 [INFORMATION INTERFACES AND PRE-
SENTATION]: User Interfaces—User-centered design; I.5.5 [Pattern
Recognition]: Implementation—Interactive Systems

1 INTRODUCTION

As the amount of data we generate and collect continually increases,
the need for computer-aided analysis grows. Although machine
learning (ML) algorithms exist for such tasks as classifying data,
two issues have arisen as these algorithms transitioned from lab
study to real world use.

Firstly, for end users, tuning a robust ML model generally needs
expert assistance, since such tuning normally requires understanding
the ML algorithm’s inner workings. Without such understanding,
user confidence in the accuracy of the generated models tends to
be low, which has hampered the adoption of these techniques, par-
ticularly in domains such as law, where users have culpability if
results are incomplete, and must convince skeptical courts of their
correctness.

Secondly, while machine learners perform well in clearly defined
domains, there are still many complex domains where available data
sets do not fully enable ML because they may be incomplete or
uncertain. Human domain experts can usually classify small data
sets in these domains, but the resulting data scale does not support
effective ML.

’Human-in-the-loop’ systems such as interactive machine learn-
ing [7] leverage the capabilities of both human and machine by
fostering a dialogue between them centered around model creation
and refinement. Such a system empowers end users to tune ML mod-
els, increases their confidence in the model’s results, and leverages

*e-mail: jtchrist@ncsu.edu
†e-mail: bwatson@ncsu.edu

human expertise to improve the algorithm’s results. Research on
these systems has focused on accommodating such diaglogue in ML
algorithms, rather than interfaces that might support the dialogue
itself.

Related work on visualization for ML has recently begun [13].
However, this work is meant to aid ML experts in their work, rather
than to help domain experts. The use of large displays for visual
analytics in large datasets has been proprosed to better support
sensemaking via interactive visual exploration and a more natural
interface than traditional interface elements [4] [5] [3] [2]. Software
such as iCluster [1] utilizes techniques drawn from analog methods
of clustering documents. While the above techniques focus on
providing easier interaction for domain experts, as yet, we have not
seen any work that focuses on classification rather than clustering.

To address this lack, we propose structuring this dialogue with the
methods of qualitative coding (QC), a decades-old process of manual
analysis. Widely used in the social sciences, QC categorizes data to
facilitate further study. Manual classification can be overwhelming,
and in practice, qualitative coders often utilize their environment to
build ’data displays’ essentially, an analog immersive environment,
with notecards on a table or post-its on a board that can be moved
around to sort and categorize data (see figure 1).

If a system utilizing QC techniques to improve ML classification
is to succeed, an immersive platform will be an essential tool for
providing this more natural technique of interacting with large sets
of data. In this paper, we explore how such a platform could be
implemented.

2 QUALITATIVE CODING

Qualitative coding (QC) [11] is a manual classification method com-
monly employed in the humanities and behavioral sciences used to
extract meaning from non-numeric data such as text, imagery, and
video. Users, called ’coders’, work independently in an iterative pro-
cess to review data, label it with codes, group codes into categories,
draw themes from categories, and finally build theory from themes
(Fig 2). The process of labelling data with codes is called first cycle
coding. Here researchers perform high-volume work, making few
high level inferences. The remainder of the process is second cycle
coding, during which researchers generate theoretical conclusions
based on the overall data patterns found in the first cycle.

It is possible for one coder to use this method to process data,
however it is also common for multiple coders to work on the same
data set, which allows for verification of each other’s work. When
multiple coders collaborate, a measure of intercoder agreement, such
as Cohen’s kappa or Krippendoff’s alpha, is used to evaluate the
robustness of the labeled data. If agreement is not high enough,
iteration of the first cycle of coding continues.

Using a form of QC called grounded theory, labels are often
created as needed by coders, rather than working with a set of labels
defined rigidly before beginning. This allows theories to develop
organically from the data. In order ensure the validity, reliability and
sensitivity of its results, QC implements several tools and practices
to assist coders in maintaining a distinct set of labels.

The codebook is an index of labels used in the first cycle, which
includes a definition, inclusion and exclusion criteria, typical exam-
ples, and boundary cases. Each coder also maintains analytic memos



Figure 1: Analog methods of categorizing data.

which they attach to the data explaining their reasoning for their
code choice, any concerns about their choice, or any other notes they
may wish to communicate to other coders (or themselves if they are
working alone) that do not fit into the codebook. Data displays are
a blanket term referring to any method of organization that coders
use to visually summarize their work. This can be anything from an
array of post-its to organizing data into piles of hard copies on tables.
Finally, as manual coding cannot be easily undone, it is common to
keep a history log.

Although many QC researchers still prefer analog methods,
computer-assisted qualitative data analysis software (CAQDAS)
exists, and many make use of ML to partially automate coding. They
also include features to track codebooks, history, memos and make
visualizations replacing data displays.

3 INTERACTIVE SYSTEMS FOR QC/ML INTERACTIONS

Qualitative coding, and especially grounded theory, has much in
common with ML [8], especially in the way that theories (or models)
are built from the data. We posit that QC can be used to create an
immersive interface that facilitates human-assisted model building,
using methods from QC to structure dialogue around the data that
users must understand.

In such a system, users might give feedback that improves model-
ing accuracy by finding structure in the data, clarifying ambiguous
items, and improving the quality of labeling overall. Giving domain
expert users such an interactive ability should also increase their
confidence in the system and its results.

3.1 How should QC structure interaction with ML?
Our goal is to increase the utility and accessibility of ML algorithms
by making interaction with them understandable and efficient enough
to allow domain experts without ML expertise to train them, and
to explain their results to their peers. To achieve this, we will hide
algorithmic detail with QC-based interaction focused around data,
and with ML classifiers treated as collaborative coding partners.

Below, we sketch the specific challenges of human-ML interac-
tion and how QC can help.

• Recall. Manually creating an ML training set is difficult,
but evaluating much larger ML algorithm results is daunting,
requiring users to recall and navigate connections between
dozens of labels and thousands of examples (or more). We will
implement QC-based codebooks (label indexes), data displays,
memos and histories to make recall easier.

• Error correction. Most ML classifiers quite unrealistically
assume that human-generated training sets are largely correct.

Figure 2: QC labels data with codes, groups codes into categories,
and ultimately identifies themes and builds theories from the data.

QC does not make this assumption, relying on iterative reflec-
tion to correct errors. We will support reflection by displaying
how well training examples ”cover” the data to code, how well
training labels fit data features, and examples that significantly
influenced the classifier.

• Iteration. ML training requires extensive iteration, and evalu-
ating the results of each iteration is difficult, particularly for
domain experts. QC supports manual iteration with improved
measures of coding accuracy, and a focus on key data exam-
ples.

• Collaboration. For reasons of efficiency, reliability and trust,
classification in many applied settings is intensely collabora-
tive. Yet while ML has rarely considered human collaboration,
QC has accommodated collaborative coding for decades. Us-
ing QC’s displays and intercoder agreement measures, we
will support the dialog of live partners, and treat ML-human
interaction as dialog with an automated partner.

• Efficiency. ML often assumes that users already know how
to label the training set, how to label it efficiently, and that
they will label examples one data dimension at a time. QC
includes grounded coding, with codes emerging as researchers
encounter the data; and simultaneous coding, with researchers
attaching multiple codes to each data item. We will boot-
strap grounded coding with unsupervised learning, and support
simultaneous coding/labelling during one manual data pass
with parallel classifiers and hyperparameters. During that data
pass, we will reduce the work required to achieve coverage by
helping experts select key examples.

• Interaction. Many domain experts structure data by pushing
paper representations of their data into piles - and many QC
researchers still prefer this manual coding experience to the
digital one offered by CAQDAS. Current ML systems cannot
support such a natural interaction. We envision immersive
tabletop and wall displays that reproduce this intuitive expe-
rience, allowing domain experts to create training sets and
evaluate classification results.

4 AN IMMERSIVE INTERFACE FOR QC-STRUCTURED ML
To reproduce the analogue data immersion that coders so often prefer,
we believe the ideal ML UI will require three key elements:



Figure 3: Possible Virtual Interface for a QC structured ML system.

• Model visualization (Figure 3, top left). An interactively
updated visual summarizing how the model organizes the
data overall. This summary helps users monitor their label-
ing/coding progress as they work with a data set that is much
larger than in traditonal QC. Figure 3 uses a pie chart visu-
alization, with colored slices representing (manually or au-
tomatically) categorized data, and gray slices uncategorized
data provisionally grouped with unsupervised learning. As the
user/coder works, colored slices grow and gray slices shrink.
Each slice represents a category, with slice radial width rep-
resenting the relative frequency of the category. The colors
within each slice represent how well the model fits the data,
with center green indicating good fit and peripheral yellow a
poor fit (QC boundary cases). In the uncategorized gray slices,
the UI highlights data items that it suggests the user classify
next. These items would be most helpful for automatically
classifying other items.

• Derived data (Figure 3, bottom left). Derived data include the
codebook and history. The codebook display lists the most
frequently used labels. Users can scroll to reveal other labels,
or zoom in on a label to reveal descriptions, typical and bound-
ary data cases, and corresponding category distributions. The
history display lists the last few user actions. Users can scroll
to reveal additional actions, with those that had significant
impact on the model highlighted.

• Data display (Figure 3, right). A zoomed-in view correspond-
ing most directly to QC’s data displays. When a user selects a
slice in the model visualization, the display shows significant
data items in that slice, ordered and colored by model fit. Sig-
nificant items may include those that are typical or boundary
cases, and those that were particularly influential on the model.
Users can select individual items in the model visualition or
indeed the data display itself to reveal further detail (including
analytic memos), and for labeling.

Training interaction might play out as follows: the user drags
an unlabeled data point into the detail view to open the document.
While looking at the document detail, she refers to the codebook to
find the correct code or codes for the point, applying them to the
point as she finds them. For the next data point, the user cannot
find a matching code, and adds one to the codebook. The model
visualization, derived data and data display change with each such
action. This includes adding a slice to the pie chart, as well as
changing the size and goodness of fit colors of the slices. The user
then sees that the last several changes have not improved coverage
and fit overall, and so unrolls those changes using the history.

Partnered QC depends on fostering a dialogue between coders,
and in our scenario, we consider the underlying ML system to be a

partner in the coding effort. Users have the freedom to explore the
data at will, but the system - as the ML expert - needs to direct the
labeling to foster the creation of a robust model. We have considered
several possibilities for creating a helpful dialogue between machine
and user:

• Suggest points to be labeled: the ML system should be able
to highlight points that it believes will be most helpful for
allowing auto labeling of other data points

• Ask for review of contentious labels: where system and user
disagree on labeling, the system may ask the user to review
and error correct if necessary

• Ask users to select human readable labels: if the system de-
termines that a new code need be created, the user should be
asked to provide wording that is descripitive to them

4.1 An Immersive Implementation
A purely virtual version of this ML-based interface could approx-
imate the analogue immersive environments used by QC experts.
Sitting around a large tabletop touch display, users might slide dig-
ital post-its or cards from the detailed view into the codebook or
model visualization to label corresponding data items. They might
tap those items to reveal detail or add analytic notes. As users work,
the model displays its own changing labels to users in the same way:
with virtual post-its that move like someone is pushing them. The
interface shows the actions of remote coding partners in a similar
way.

The next step might involve creating a two-way tangible interface,
offering domain experts very familiar affordances. In this interface,
the post-its and cards might be represented by physical post-its and
cards. Users would be able to make a good guess at how to slide
cards or post-its to categorize, and could pick up a card to reveal
detail. The model would slide these same physical cards itself to
represent its own work.

We might support such tangible input with specially printed cards
that can be detected by a camera (e.g. with infrared ink fiducials).
The same camera might scan and interpret handwritten notes written
on these cards. Tangible output representing changes in the model
are more challenging, but we might achieve it with simple Arduino
robots, or with magnetic manipulation, like that used by high-end
automated chessboards (e.g., [6]). Pangaro et al. [10] describe a
similar approach.

5 A SUCCESSFUL INTERACTIVE ML — WHEN MIGHT WE
SUCCEED?

To begin to understand how to structure a system that facilitates
this dialogue between user and machine, we should consider the
indicators of a successful system, and how to measure each.

One primary goal of the system we have described is to (ideally)
eliminate the need for an ML expert to assist during the building
and training of a model. Or, can users without ML expertise steer
ML behavior and produce robust results? The obvious marker for a
successful case is that a model built without the aid of an ML expert
should preform at least as well as a model built by the ML expert.
Models can be evaluated by any of the common measures for that
type, such as accuracy for classification models.

The other major consideration in building this type of system is
whether or not users will take advantage of this new capability. An
established method for evaluating new technology is the Technol-
ogy Acceptance Model [12], which is administered as a self-report
questionnaire that asks potential users if they believe the technol-
ogy is useful and easy to use. If users do not agree, then they are
unlikely to adopt the new technology. Further goals for the system
include group collaboration and inclusion of and consideration for
non-domain experts as collaborators.



As with any human-facing system, we should consider standard
usability heuristics [9] during design. Heuristics such as these pro-
vide standard guidelines for interface design that improve usability
and more importantly, produce a familiar interface for users that
reduces the initial learning curve and can increase adoption rates.

Our proposed QC/ML system should fulfill several of these heuris-
tics. System status should always be visible via the codebook and the
data display. The system assists with error recovery by maintaining
a history supporting undo, and automatically evaluating feedback
from the human users and highlighting poorly fitting data for fur-
ther consideration. Rather than relying completely on user recall,
recognition in the codebook and display should aid it, for example
by reducing the likelihood of creating duplicate labels. Finally, the
QC-based language and structure of the system should be easily
understood by users, as it minimizes references to ML terminology,
technology and components. Users should not feel as though they
need to be knowledgeable in ML to use the system.

6 CONCLUSION

Human-in-the-loop machine learning systems have many advantages
over traditional, automated ML. By allowing non-expert users to
participate effectively in training a model, human-in-the-loop ML
leverages the more flexible and accurate human pattern matching
in complex, weakly structured domains; ultimately building more
robust models with the need for fewer pre-labeled instances in the
data.

We advocate qualitative coding as a promising way of structuring
human-in-the-loop ML. It is a natural approach, having structured
human classification for decades.

REFERENCES

[1] S. M. Drucker, D. Fisher, and S. Basu. Human-computer interaction
interact 2011. 6948, 1 2011.

[2] A. Endert, R. Chang, C. North, and M. Zhou. Semantic interaction:
Coupling cognition and computation through usable interactive ana-
lytics. IEEE Computer Graphics and Applications, 35(4):94–99, July
2015.

[3] A. Endert, P. Fiaux, and C. North. Semantic interaction for sensemak-
ing: Inferring analytical reasoning for model steering. IEEE Trans-
actions on Visualization and Computer Graphics, 18(12):2879–2888,
Dec 2012.

[4] A. Endert, P. Fiaux, and C. North. Semantic interaction for visual
text analytics. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, pages 473–482, New York,
NY, USA, 2012. ACM.

[5] A. Endert, M. S. Hossain, N. Ramakrishnan, C. North, P. Fiaux, and
C. Andrews. The human is the loop: new directions for visual analytics.
Journal of Intelligent Information Systems, 43(3):411–435, 1 2014.

[6] Excalibur. Excalibur electronic 740d phantom force electronic chess
set. https://www.amazon.com/dp/B0018PWUJA/ref=cm_sw_r_
cp_ep_dp_XfDCzbKXPM7JQ, 2017. [Online; accessed 21-July-2017].

[7] J. A. Fails and D. R. O. Jr. Interactive machine learning. In Proceedings
of the 8th international conference on Intelligent user interfaces, pages
39–45. ACM, 2003.

[8] M. Muller, S. Guha, E. P. Baumer, D. Mimno, and N. S. Shami. Ma-
chine learning and grounded theory method: Convergence, divergence,
and combination. In Proceedings of the 19th International Conference
on Supporting Group Work, GROUP ’16, pages 3–8, New York, NY,
USA, 2016. ACM.

[9] J. Nielsen and R. Molich. Heuristic evaluation of user interfaces. In
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 249–256. ACM, 1990.

[10] G. Pangaro, D. Maynes-Aminzade, and H. Ishii. The actuated work-
bench: computer-controlled actuation in tabletop tangible interfaces.
In Proceedings of the 15th annual ACM symposium on User interface
software and technology, pages 181–190. ACM, 2002.

[11] J. Saldaña. The coding manual for qualitative researchers. Sage, 2015.

[12] V. Venkatesh and F. D. Davis. A theoretical extension of the technol-
ogy acceptance model: Four longitudinal field studies. Management
science, 46(2):186–204, 2000.

[13] M. D. Zeiler and R. Fergus. Visualizing and understanding convolu-
tional networks. In European conference on computer vision, pages
818–833. Springer, 2014.

https://www.amazon.com/dp/B0018PWUJA/ref=cm_sw_r_cp_ep_dp_XfDCzbKXPM7JQ
https://www.amazon.com/dp/B0018PWUJA/ref=cm_sw_r_cp_ep_dp_XfDCzbKXPM7JQ

	Introduction
	Qualitative Coding
	Interactive Systems for QC/ML Interactions
	How should QC structure interaction with ML?

	An Immersive Interface for QC-structured ML
	An Immersive Implementation

	A successful interactive ML — when might we succeed?
	Conclusion

