DATA ANALYSIS UNDER UNCERTAINTY

Christoph Kinkeldey

References: http://tiny.cc/va2017-ref

Temperature forecast

http:// wetterbilder.daserste.de/

Important to be informed about uncertainty when

- analyzing and understanding data
- making decisions based on data

It's cloudy, but will it It drops a 10% actually rain? What does and then goes up a 20% "chance" even to a 30% chance Mean ? I don't went at NOON. It's too carry an umbrella. early to sort through But, I also don't want to get caught in a storm. this Predictions present stressful And, predictions can be overwhelming choices for the user.

http://visualization.ischool.uw.edu/hci_uncertainty/

Uncertain information is hard to interpret! (even if uncertainty is successfully communicated)

Overview

- I. Concept: What is uncertainty?
- II. Visualization: How to visualize uncertainty?
- III. Usage: Decisions under uncertainty

Part I / III: Concept of uncertainty

Uncertainty in a nutshell

»[T]here are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns – there are things we do not know we don't know.«

Donald Rumsfeld, former United States Secretary of Defense, February 12, 2002

Uncertainty // Sources

- Variability in nature
- Deficiency in measurement methods and equipment (resolution, accuracy...)
- Deficiency in modeling (imprecision, lack of complexity...)
- Insufficient of conflicting information
- Others, e.g. uncertainty introduced when visualizing

Geodata Uncertainty // Definition

Lack of knowledge about:

- objects of the real world due to
 - erroneous measurement,
 - vague definitions and concepts or
 - unknown and ambiguous meaning
- effects of transformations performed on the data
- the data's suitability for the intended application (*Leyk 2005*)

Uncertainty // Definition

Uncertainty and *error* are different concepts!

Error: True value is known *Uncertainty*: True value is not known

Uncertainty always describes a lack of knowledge

Uncertainty // Definition

Measurement of height with GPS:

Error: 10m (if we know the exact value)

Uncertainty: +/- 10m (may be known from the GPS device)

Geodata Uncertainty // Categories

Attribute uncertainty

Decidious forest? Mixed forest?

Geometric uncertainty

Position of boundary?

Temporal uncertainty

Valid for what time interval? $? \leftarrow 1 \rightarrow ?$ time

Uncertainty Visualization Pipeline

Part I / III: Uncertainty visualization

NWS 2016

NWS 2016

NWS 2016

Sources: National Weather Service; LandScan population database

 $\frac{2}{0}$

It's challenging to visualize uncertainty!

It is meta-information about other variables

Intuitiveness of visualization is important

Literature Atlas

(Reuschel / Hurni 2011)

Global warming

(Pöthkow et al. 2011)

Text recognition

(Collins et al. 2007)

Visual Variables

(MacEachren et al. 2012)

Visual Variables

Blur

Position

Color value

Visual metaphors (fog, clarity...) are deemed to increase intuitiveness of uncertainty displays

Visual metaphor "Clarity"

(MacEachren 1992)

Visual Metaphor: Fuzziness

Copyright © 2009 Pearson Prentice Hall, Inc.

(MacEachren 1992)

Visual metaohor: Transparency ("fog")

Copyright © 2009 Pearson Prentice Hall, Inc.

Visual metaphor: Resolution

High Resolution

Low Resolution

(MacEachren 1992)

Visual metaphor: "Sketchiness"

(Boukhelifa et al. 2012)

⁽Wood et al. 2012) 33

Uncertainty Visualization

What are the best ways to depict uncertainty visually for analytical tasks? Related to... ...accuracy, ...speed, ...intuitiveness, ...user confidence, and ...preference

Uncertainty Vis Cube (UVis³)

intrinsic / extrinsic coincident / adjacent static / dynamic

(Kinkeldey et al. 2014)

Uncertainty Vis Cube (UVis³)

- Intrinsic: Existing objects in the display are manipulated
- Extrinsic: Uncertainty is represented by additional objects in the display, e.g. symbols or grids

Uncertainty Vis Cube (UVis³)

- Coincident: data & uncertainty in one view
- Adjacent: data & uncertainty in separate views

(Kinkeldey et al. 2014)

Uncertainty Vis Cube (UVis³)

- Static: uncertainty visualization is static
- Dynamic: uncertainty visualization uses animation and/or interaction

(MacEachren et al. 1998)

(Luboschik et al. 2010)

(Viard et al. 2011)

(Hope and Hunter, 2007) 42

Ensemble mean of the PMCH concentration [µg/m³] in the sample dataset

(Alberti 2013) ⁴³

Part III / III: Usage of uncertainty

Scholz & Lu 2014

Scholz & Lu 2014

Scholz & Lu 2014

Scholz & Lu 2014

In order to use uncertainty information:

Users need to understand the meaning

They need *guidelines* how to interpret different levels of uncertainty

-> decision support systems (DSS) can support this

Decision support

Questions?

Find the references here: http://tiny.cc/va2017-ref

Hands on!

PM10 emissions: get the data

Particle pollution PM10: inhalable particles of 10 micrometers and smaller Get deeply into humans' lungs and even in bloodstream Can cause serious health problems (asthma, lung cancer)

https://www.epa.gov/pm-pollution

Hands on!

A journalist is writing about the dangers of PM10 and what can be done politically on the European level to decrease the emission

For that she needs a map of PM10 emissions over Europe in the past

Let's GO!