
�Search, Show Context, Expand on Demand�: Supporting
Large Graph Exploration with Degree-of-Interest

Frank van Ham and Adam Perer

Abstract�A common goal in graph visualization research is the design of novel techniques for displaying an overview of an
entire graph. However, there are many situations where such an overview is not relevant or practical for users, as analyzing the
global structure may not be related to the main task of the users that have semi-specific information needs. Furthermore, users
accessing large graph databases through an online connection or users running on less powerful (mobile) hardware simply do not
have the resources needed to compute these overviews. In this paper, we advocate an interaction model that allows users to
remotely browse the immediate context graph around a specific node of interest. We show how Furnas� original degree of interest
function can be adapted from trees to graphs and how we can use this metric to extract useful contextual subgraphs, control the
complexity of the generated visualization and direct users to interesting datapoints in the context. We demonstrate the
effectiveness of our approach with an exploration of a dense online database containing over 3 million legal citations.

Index Terms�Graph visualization, network visualization, degree of interest, legal citation networks, focus+context.

1 INTRODUCTION

Visualizations of very large graph datasets typically aspire to present
the user with an overview of the entire graph, so no information is
missing and the data can speak for itself. However, this lofty goal
often results in visualizations that focus exclusively on providing a
global view of the structure of the graph. While topology-based
graph visualizations ideally may allow analysts to deduce central
actors or clusters in a graph, in practice the density and sheer size of
many graphs make it hard to create an effective visual representation
of the whole graph. Visualizations that faithfully try to render all the
data often suffer from cluttering and make it difficult for users to
accomplish even very basic tasks such as following edges or
counting in-degree of nodes [19]. Structural clustering techniques
can reduce the complexity of the data under analysis, but often result
in abstract high-level diagrams in which the semantics of the clusters
are not always clear.

Users that wish to obtain overviews of very large graphs are
typically trying to learn something about a particular dataset. For
example, a social scientist may want to identify cliques in a very
large social graph and see how they interact, while a software
architect may want to deduce the decomposition of a program from
its call graph. These use cases typically deal with global patterns like
clusters and outliers. However, there is also a very large class of
users that frequently deal with large network data but are not
interested in global patterns in this data. Instead they are trying to
learn something more about a particular datapoint in the dataset and
how this point relates to the rest of the data. As a concrete example,
financial fraud analysts typically try to understand the pattern of
connections associated with a specific fraudulent bank account,
while programmers need to understand the dependencies of a
specific piece of code if they want to understand the impact of
potential changes.

A second argument against presenting users with global
overviews is of a more practical nature. Typically, multiple analysts
look at a single large dataset that is being maintained at a single

centralized location. Many of these graph datasets are huge even by
today�s standards, and transferring them from a centralized server to
multiple client machines is not an option. Apart from that, even the
visualization designers might not have access to the full data because
of privacy reasons or other access restrictions, making it impossible
to pre-compute overviews for these giant graphs.

For these two reasons, we explore an alternative to the traditional
�overview, zoom, details on demand� browsing model [18], which
can be loosely characterized as �search, show context, expand on
demand�. In this model, users pick a particular datapoint as a focus
for analysis and the system then computes and displays an �optimal�
relevant context given the users� current interests. Users can then
direct the visualization system to expand this context in a direction
he or she deems interesting. This model is somewhat similar to the
idea of �Plant a seed and watch it grow� [12]. However, whereas that
model relied solely on topology for context, our approach is
extensible to include other types of relevant context based on
inherent attributes, associated content, and user interactions.

To determine this relevant context, we extend the well-known
concept of degree of interest (DOI) [4] from trees to general graphs.
By using a DOI function to assign a measure of relevance to each
node in the graph, we can extract a maximal interest subgraph
around the point of interest. Users can then interact with this initial
subgraph and expand it in any direction. Our degree of interest
functions use both embedded attributes and topology of the graph, as
well as recorded actions of users. As user tasks are often exploratory
and not well-defined, users have full control over the interest sources
and can adapt them during exploration. We demonstrate our
approach on approximately 15 gigabytes of legal documents
containing information on all US federal and Supreme Court cases to
date, resulting in a citation graph of over 300,000 nodes and 3.3
million edges. Our system allows multiple analysts to simultaneously
explore this online citation graph through an interactive web-based
client. Concretely, we claim the following contributions:

 An adaptation of DOI from tree to graph datasets.
 An augmentation of DOI to include inferred interest from the
users� search process.

 Frank van Ham is at IBM-ILOG Research in Gentilly, France and can be
reached by e-mail at frankvanham@fr.ibm.com

 Adam Perer is at IBM Research in Haifa, Israel and can be reached by e-
mail at adamp@il.ibm.com

Manuscript received 31 March 2009; accepted 27 July 2009; posted online
11 October 2009; mailed on 5 October 2009.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org .

 Methods for diffusing interest over an entire graph to mitigate
local minima.

 Novel visualization and interaction techniques that use DOI
functions to reduce complexity of very high degree nodes and to
provide visual clues to help guide users to hidden, yet interesting
results.

953

 1077-2626/09/$25.00 © 2009 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

Our paper begins with a reflection on related work, where we
categorize and discuss Degree of Interest based research as well as
current approaches to large graph visualization. In Section 3 we
explain our methods for adapting DOI to graphs and our resulting
implementation. Section 4 demonstrates our system on a legal corpus
of documents and highlights a few examples of how our approach
succeeds. Finally, we discuss the positive and negative aspects of
DOI graphs and suggest future work in Section 5, while we conclude
in Section 6.

2 RELATED WORK
This section discusses previous work in the area of degree of interest
visualization and summarizes the state of current large graph
visualization techniques that do not focus on displaying a structural
overview.

2.1 Degree of Interest functions in Visualization
Furnas first introduced the concept of Degree of Interest (DOI) in
[4], realizing that information items have different levels of
importance to different observers, depending on their viewpoint.
Instead, an observer�s initial point of interest (or focus) can be used
to compute a numerical value for each data item that indicates its
degree of interest. These values can then be used to create compact
elided or abstracted views of the full data, by only displaying
information items above a certain �interestingness� threshold.
Furnas� original paper showed how these ideas can be applied to
trees or calendars and he later revisits them in [5] offering theories of
the importance of DOI for real user�s tasks.

Card and Nation used this concept to implement DOITrees, a tree
visualization that uses DOI calculations and focus+context
interaction techniques [1]. Heer and Card [9] extends this work with
an efficient, space-constrained, multi-focal tree layout.

 Although DOI functions are well established to display trees,
applications to general graphs are limited. Two notable techniques
[7][8] use an explicit degree of interest function to create multilevel
abstractions of a whole graph by more aggressively clustering nodes
further away from a focal node. In practice however, they tend to
generate very abstract views where the meaning of a cluster of nodes
to the user is not always clear and the actual clustering structure
changes substantially with adjustment of the focus.

Graphical distortion techniques are related to the concept of
degree of interest, but instead of explicitly assigning an interest value
to nodes they perform information compression in screen space. That
is, nodes further away from a predefined focus are assigned less
screen space, resulting in a graphical fisheye [17]. Other approaches
do not necessarily assign additional screen space, but use visual cues
such as font size and color to focus user attention on interesting
items [2]. Although graphical information compression techniques
can be useful in some cases, they still require access to and rendering
of the entire graph, which is impractical for our case.

2.2 Large graph visualization
As mentioned in the introduction, many graph visualization

techniques try to present the user with a holistic view of the entire
graph. This typically involves very efficient layouts, multiscale
clustering techniques or matrix representations. Although providing
a structural overview of the graph is a laudable goal, there are many
cases where the user is simply not interested in a global view of the
whole graph, but wants to solve a particular concrete task on the
graph instead. Thus, we focus the discussion here to related work
that does not focus on showing the overall graph topology. We
discern three basic categories that all use different approaches to
reduce the complexity

2.2.1 Attribute based abstractions
The first category of approaches proposes to use the node

attributes in multivariate graphs as parameters for abstraction.
PivotGraph [23] compresses multivariate graph in two dimensions

by rolling up nodes into metanodes if they have the same attribute
value for a particular dimensions. Semantic substrates [19] use node
attributes to provide a basic layout of the graph based on space
subdivision and then superimpose the edges. Approaches in this
category have the advantage that one can more easily make
statements on higher level features as these relate directly to the
application area. Unfortunately they generally do not provide
detailed information on the particular connections of a single node.

2.2.2 Contextual views
Closest to our proposed approach, contextual views allow the

user to pick a point of interest in the graph, and show the immediate
context around that point. Both Touchgraph [22] and Palantir [14]
offer commercial graph visualization components that allow users to
select a focal node and explore the surrounding subgraph. TreePlus
[12] allows users to explore graphs using an enhanced tree layout,
which users often find more comprehensible than a graph layout.
These approaches perform relatively well when the average degree
of nodes in a graph is small, but struggle with very high degree
nodes.

2.2.3 Computational approaches
By first computing network metrics on the graph, we can

compute relevant subgraphs or detect outliers in the graph, without
having to visualize it first. SocialAction [15] uses attribute ranking
and coordinated statistical views to allow users to use metrics from
social network analysis to isolate important nodes, clusters and
outliers in graphs. NodeXL [20] also follows this approach by
integrating the statistical and visual capabilities of Excel with graph
visualizations. Although these type of approaches allow the user to
target specific features when exploring, the computational
complexity of the metrics involved prohibits application to truly
large graphs.

3 DEGREE-OF-INTEREST GRAPHS
In this section we show how we can extend the well-known

concept of Degree of Interest (DOI) from trees to graphs. In Section
3.1 we will outline our proposed interest function and in Section 3.2
we show how we can use this interest function to both compute
interesting subgraphs and control the complexity of the visualization.
Finally, in Section 3.3 we explain how we can use these algorithmic
pieces to set up a system that lets us browse massive graphs from a
remote client.

3.1 Extending DOI to graphs
In his seminal paper [4], Furnas defined a generalized degree of
interest function for data items by discerning two components: An a
priori interest function that defines the general importance of a data
item x irrespective of the user�s current interest and a distance
function in which the interest of an item depends on the currently
selected focus node y. This results in a two part interest function that
can be expressed as:

DOI(x | y) = API(x) + D(x,y)

In other words, the total interest of a point x given a focus point y
is a linear combination of an a priori interest function API and a
distance function D. Furnas showed that for many types of data both
functions have natural definitions. As an example, for trees API(x)
can be defined in terms of the distance to the root. Distance can then
be directly mapped to graph distance in the tree. By effectively
eliding nodes below a certain interest threshold from screen we can
create comprehensive displays of potentially very large information
structures.

There exists a natural way to adapt these basic definitions to
general graphs: API(x) can be computed in terms of structural graph
properties or node attributes, such as node degree or the value of a
particular node attribute. D(x,y) can be directly mapped to minimal

954 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

graph distance. Note that the distance between two nodes can again
depend on multiple factors such as edge weight or other edge
attributes. Thus, it is necessary to define a separate disinterest
function EI(e,x,y) > 0 for each edge, where higher values indicate
less interest in following a link e between nodes x and y. This
function can be used to define the path length between two arbitrary
nodes in the graph. In theory, we can then use this adapted DOI
function to extract a maximal interest subgraph from a very large
graph given an initial focal node y. In practice, however, two
problems remain.

The first is how users actually pick an initial focal node y in a
potentially very large graph if users do not know a node�s exact
name or identifier. Although this process is largely ignored in
previous work on degree of interest based visualizations, we
emphasize it as the Search component of our �Search, Show
Context, Expand on Demand� model.

Fig. 1. By diffusing interest values over the network, we can use
a greedy local search heuristic to find maximal interest
subgraphs (dark grey) when starting from the focal node
(circled) Traditional information visualizations typically rely on

opportunistic �browsing� of high level (visual) overviews of the data
to identify potentially interesting starting points for analysis. In the
absence of such a full data representation, users must search the
entire node set for items of interest that satisfy certain parameters
and then select one node from the result as focus. Note that this can
be realized in different (visual and textual) ways. In a simple case,
the user specifies a textual search term and the system returns a list
of nodes matching the term. A search interface that supports faceted
search is another option, if structured attribute information is
available. Another approach is a visual search interface that presents
users with a simplified graphical representation (e.g. a scatterplot) of
all items and allows a selection of results graphically.

In fact, the actual search parameters z that users specified give
important hints on the interest a user assigns to particular nodes. We
therefore propose an inclusion of a third term in the DOI function
that captures this fact. The so-called User Interest (UI) function can
be expressed as the interest information that is known before the user
picks a focal node. Examples of this information include the search
score of a node for a particular textual query or the facets used in a
faceted search. More explicitly, if users performed a faceted search
for items that, for example, are in a particular price range and have a
particular feature, the DOI algorithm needs to assign higher
relevance to items that match one or more of those criteria. This
results in the following function definition:

DOInaive(x | y,z) = API (x) + UI (x,z) + D(x,y)

A second problem is that the interest function over graphs has many
local maxima. That is, there are many potentially interesting nodes,
surrounded by non-interesting nodes. Typically, in previous work on
trees, DOI functions are strictly nested, that is, DOI(x) of any node x
in a subtree of r will never be larger than DOI(r). This allows for fast
recomputation of DOI values [9] and guarantees connected trees
when thresholding on DOI. However, there is no such guarantee in
graphs. Applying a simple DOI threshold function to the data will
then yield a potentially large number of disconnected subgraphs,
while a local search algorithm starting from the focal node will not
be able to reach the high interest node because it has no global
knowledge of the surrounding structure (see Fig. 1).

We can address this problem by slightly modifying the API and
UI functions, such that the final interest value for a node x not only
depends on its intrinsic interest, but also on the intrinsic interest
values of its neighbors N(x):

APIdiff(x) = max(API(x), max(n N(x) : 1/EI(e,x,n) APIdiff(n)))

In other words, the interest of a node depends on the maximum of its
own interest values and a fraction of its highest interest neighbour. In
a sense, we are diffusing the interest values over the entire graph.
The parameter (0 < 1) determines the diffusion factor, where
values closer to 1 increase the diffusion. By including the Edge
Interest function we can optionally control the direction and amount

of interest diffusion based on the interestingness of the connecting
edge. We can compute this recursive function by recomputing the
API for nodes in N(x) only when API(x) changes; the max quantifier
limits the number of recomputations needed to a small number in
practice, depending on the value of . An analogous definition can be
used for UIdiff(x).

Our final resulting interest function for a node x then captures the
a priori interest, the parameters the user has specified in their search
z for a focus node y and the distance of x from that focus:

DOI(x | y,z) = APIdiff(x) + UIdiff(x,z) + D(x,y)

As defined, API needs to be computed only once, the UI needs to be
recomputed whenever the initial search terms z change and D needs
to be recomputed whenever the focal node y changes. In the next
section, we show how we can use this interest function to allow users
to interactively navigate very large graphs using a remote client.

3.2 Extracting contextual subgraphs
The second step of our proposed interaction model is Show Context.
Given a giant graph G and an initial node of interest y, a challenge
still remains on how to compute a subgraph F of G that is small
enough to transmit to a client, but also captures as much of the
relevant context around y as possible. More formally, we need to
efficiently compute a connected subgraph F of size at most S that
contains y and has maximal total interest.

It is possible to perform an exhaustive search of the solution
space since there are only a limited number of connected subgraphs
around y of size S, but such a search is too expensive. Instead, we use
a greedy optimization algorithm that provides a good tradeoff
between speed and interest optimization. Starting from an empty
nodeset F and a list of potential candidates {y}, we remove the
candidate x with the highest DOI from the list, add it to F and then
add the immediate neighbors N(x) of that candidate to the list of
potential candidates. This process continues until the list of potential
candidates is empty or until the size of F is S. The resulting
algorithm runs in time O(S log S), as it is necessary to maintain a
sorted heap of potential candidates. The computed subgraph is then
transmitted to the client along with graph meta-data such as labels,
current interest levels and edge weights. Layout of this subgraph can
then either be done client side or server side, depending on the type
of client. This flexibility opens up many new possibilities for graph
exploration. For example, one can easily imagine users browsing the
graph over a mobile phone, a device that generally does not have the
processing power needed to compute layouts for larger graphs in
interactive time. In these situations, the server is responsible for
computing the layout.

955VAN HAM AND PERER: “SEARCH, SHOW CONTEXT, EXPAND ON DEMAND”: SUPPORTING LARGE GRAPH…

3.3 Expanding a subgraph
The final step of our interaction model is Expand-on-Demand. Once
the local context for a node is available, users can decide to expand
this context by bringing in more information. We have implemented
a simple mechanism that allows users to click on a node x in the
current context to bring in more contextual information for that
particular node. This allows a user to direct the expansion of the
current subgraph based on their current information need.

RAM

Graph Server
 API interest values
 Node attributes
 Edge attributes

Session 1
 Search terms
 UI interest values
 Current Subgraph

Session n
 Search terms
 UI Interest values
 Current subgraph

Client 1
 Current subgraph
 Layout
 DOI interest values

Client n
 Current subgraph
 Layout
 DOI interest values

Data
server

Search
index

Fig. 2. Basic client-server architecture. The server maintains a copy of
the entire network in RAM with the API values. Client interaction is
handled from separate session threads, which keep track of session
specific information, such as the currently visible subgraph and UI
values.

A naive solution would then bring in all the neighbors of x when
the user indicates a need for more context. However, the system
cannot make any guarantees on the degree of the node in question.
This may result in users inadvertently increasing the size of the
subgraph with hundreds of nodes resulting in potentially unreadable
graphs and putting significant strain on the display and layout
subroutines. While indicating that a node has a very high degree (for
example, by visually labeling the number of neighbors on each
node) is useful, users need a way to limit the number of new items
to ensure the visualization does not get too complex.

The interest function defined in the previous section can be
reused so the system can make judgment on which nodes in the set
of adjacent nodes are most important. We can then limit the number
of new nodes added to the current view by only adding the top N
most interesting nodes. In combination with visual indicators on the
size of the context, the amount of new information added to the
current context can be controlled. If users wish to see more than N
connected nodes, they can simple click the node multiple times, with
each click bringing in N additional nodes.

An important unsolved problem in information visualization is
how to direct the users to potentially interesting items in the
visualization. Without some sort of guide, visualizations of large
datasets can quickly degrade into massive graphical representations
that still require the user to click through or drill down on many
different items to find something interesting. To address this problem
we can reuse our DOI function, which tells us how interesting a
particular node is, to guide the user to interesting parts of the graph
that are currently hidden. We therefore visually highlight the n most
interesting directions for expansion. Typically, n should be small
(n<5) to avoid overloading the user with choices. In most cases this
top n will be stable as nodes further away from the focus will have
lower interest. That is, if the user expands a node that is not in the
top n, the interest of the new node will most likely be lower than the
interest of the top n nodes because its distance from the focal node is
greater. Using these visual indicators, users are guided toward
interesting parts of the graph, preventing them from having to
needlessly expand dozens of items before hitting potentially
interesting ones.

3.4 Implementation
We have implemented the above ideas in a client-server system that
allows users to browse arbitrary graphs over an Internet connection.
The only hardware constraint is on the server, which requires enough
physical memory to cache the entire graph data in RAM for
performance reasons. If not enough RAM is available we can always
use a disk based graph storage, but this will notably impact
performance. There are no hardware constraints on the client. In this
section we will give a brief description of some of the practical
implementation issues. Afterwards, in Section 4, we show how we
can apply this general setup to a specific dataset.

3.4.1 Graph Server
The graph server is responsible for maintaining an in-memory
representation of the entire graph and serving that data out to
different clients connecting to the server. Our full database resides in
an RDBMS on a separate database server. On startup, our graph
server connects to the database and reads the full graph into RAM
along with any node attributes needed to compute interest functions.
Other attributes are fetched from the database server on demand, to
conserve memory. After reading the data, the server computes

APIdiff(x) for all nodes and stores the result with each node. Finally,
it waits for connection requests from any clients. Since the full
interest function is dependent on the user�s search terms and focal
point, we cannot store the results of the DOI computation with each
node.

Data that is specific to a user�s session is therefore stored with a
session object. Every session object runs in a separate thread inside
the graph server and is responsible for maintaining information that
pertains to a user�s current browsing session. The node layout is
computed using a force directed algorithm. In past experiments, we
generally found the classic gradient descent method unreliable and
prone to local minima and oscillations. Instead, we opted to use the
stress majorization optimization method [6] that provides far better
layout stability and is sufficiently fast for medium sized graphs.

3.4.2 Visualization Client
The client�s main responsibility is to visually present the current
subgraph to the user and handle all display and interaction tasks. Due
to our extensible framework, the actual functionality of the client
might depend on the capabilities of the platform on which it runs.
For our use case, we implemented a client that runs in a standard
web browser using Adobe�s Flash framework. Our client consists of
four basic sections (see Fig. 3): A searchbox (a), a list of search
results (b), the main canvas (c) and a panel (d) that allows users to
adjust the DOI settings to the task at hand. The searchbox in the
upper right allows the user to perform a textual search on the full
dataset, as the client makes a Search request to the server. The
results of that search are then displayed in a tabular search result list.
We opted to include basic node properties relevant to the application
area, as well as an indication on the size of the surrounding
subgraph. The latter immediately gives an indication as to what the
size of the display will be when that node is picked as a focal node,
and prevents the user from selecting uninteresting singleton nodes.
To avoid excessive computational overhead on the server we do not
display the exact size if it is over a fixed threshold.

The user can then pick any node x from this list of search results
and drag it over to the main canvas to view its context. The client
makes a request to receive a subgraph around x from the server. This
subgraph is then displayed on the main canvas with the focal node
highlighted. The sizes of nodes correspond to their (normalized)
degree of interest to give more visual attention to nodes with high
DOI. Node color is used to map a node attribute that is revelant to
the application area. Furthermore, nodes that match the users� initial
search query are surrounded with a blue halo.

956 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

Fig. 3. Basic user interface layout. A user types a query in the searchbox (a) which yields a number of hits presented in tabular form (b).
One of these hits can then be dragged to the main screen (c) which shows the subgraph centered on that node. Other nodes that matched
the user�s search are highlighted in blue. Users can adapt the balance between different components of the DOI function and the size of the
subgraph in a separate panel (d).

Users can click a node to send an expand request to the server to
return its most interesting hidden connections. In the client
visualization, fading edges emanate from nodes to show the user that
more connections are available. Although the endpoints of these
edges are not visible, they are included in the layout. This means that
different fading edges connecting to the same node will point a
single point in space, giving the user a visual clue that they connect
to the same node. Not every non-visible connection is drawn because
the degree of a single node might be too large to render, so we cap
the number of fading edges per node to a maximum. To give users a
more quantitative indication on the actual number of adjacent nodes,
we also display the precise number on each node. After receiving a
new set of connections a new layout is computed based on the initial
layout and the whole graph is then smoothly animated to its new
position.

4 EVALUATION: LEGAL CITATION NETWORK
To evaluate the initial benefits of our approach we applied it to a
massive dataset of legal document citations. Legal practitioners
sometimes need to interpret this citation graph of cases in order to
understand court decisions. In the United States, laws rely on the
concept of precedence, so lawyers must carefully study case citations
to understand how relevant issues were ruled in prior cases [24][21]

Typically, searching for legal background information happens
through a digital library platform such as LexisNexis or Westlaw
[13]. These platforms however, are mainly text-based and focused on
providing powerful search, convenient overviews of single
documents, as well as quick linking between documents. Obtaining a

context of cited documents typically requires manually clicking
through a potentially large number of related cases, which are each
visible in their own separate windows. This type of interaction model
makes it hard to find relevant cases more than one step out, as that
could possibly require manual inspection of hundreds of cases.

The following case study is conducted on a set of over 15
gigabytes of legal documents containing every federal court case in
US history, but does not include cases tried by state courts. Still,
these documents form a graph of over 300k documents and slightly
over 3.3 million citations. The average number of citations to and
from a node typically lies between 1 and 200 but there are a
substantial number of cases with thousands of citations. Fig. 5 shows
the detailed degree distribution. We loaded this full dataset into our
setup running on a Dual-Core 2.4Ghz laptop with 4GB RAM, which
took about 5 minutes of server startup time loading data and
computing API values, and ended up using 1.2GB of RAM. Queries
from the browser client typically finish in a couple of seconds (about
15 seconds per search and UI recomputation and up to 3 seconds for
subgraph computation)

Here, we wanted to see if we could use DOI graphs to extract
relevant context around legal cases. We decided that relevant cases
would be oft-cited Supreme Court cases that match the initial
keyword search and are in close proximity to the focus. The a priori
interest (API) function for our legal graph examines node attributes
and topology of the graph to assign higher interest to supreme court
cases and cases with higher in-degree. The user interest (UI) function
considers the score for that node on the search terms used when the
legal analyst searched for a focal node. Users may directly
manipulate the weights of the different components in the DOI

957VAN HAM AND PERER: “SEARCH, SHOW CONTEXT, EXPAND ON DEMAND”: SUPPORTING LARGE GRAPH…

function by using sliders in the user interface. Finally, as no attribute
information for edges exist, the edge interest function EI is constant.
Even though none of the authors are legal experts, these choices for
interestingness seem reasonable as a first test, though further user
testing might lead to more refined DOI functions for this particular
domain. In the next sections we highlight four different potential
usage scenarios.

4.1 Importance: Show me important cases related to
my case of interest.

DOI graphs are useful when analysts wish to find important nodes
that are related to a specific focal node. In a legal context, this can be
particularly useful when analysts are looking for important, oft-cited,
Supreme Court cases relevant to their selected case. In this particular
scenario, a legal analyst searched for court decisions that matched
the keywords �religion AND discrimination�. Out of the search
results, the analyst selected a decision from 1980, Miller v. Texas
State Board of Barber Examiners. (annotated �Focus� in Fig. 4a).
This case features a decision about whether or not an employee was
fired due to �discrimination on account of race, color, religion, sex,
or national origin�. As Fig. 4a illustrates, the contextual graph

includes many other nodes that also feature the user�s searched
keywords (nodes highlighted in blue). These user-matched nodes
surround three relevant Supreme Court decisions: Johnson v.
Railway Express (on the limitation period of filing a discrimination
suit), Griggs v. Duke Power (on indirect discrimination by aptitude
tests) and McDonnell Douglas v. Green. Especially this last case, an
�early substantive ruling� on employee discrimination according to
Wikipedia, is remarkable because this case is not directly connected
to the original focus case, nor does this case match the user�s original
keywords. Nonetheless, this case is brought to the users attention due
to a priori interest function giving weight to often cited, high court
cases in the context of the focal node. Without DOI, the subgraph of
all cases two hops out would contain 2345 nodes and 2847 edges,
would have a diameter of at most 5, and would be impractical to
visualize using a node link diagram.

Additionally, Fig. 4a shows how indicating high interest edges
gives us valuable clues as to the direction in which we want to
expand the graph. In Fig. 4a three edges are highlighted which all
seem to point at a single position. After expanding the marked edges,
we find two additional Supreme Court cases on discrimination.

(a) Importance (b) Reasoning

(c) Overview (d) Relevance

Fig. 4. Sample use cases and tasks. In (a) the user is looking for relevant cases on �religion + discrimination� that do not contain these search
terms and might not be cited directly by the focal node. Three relevant supreme court cases are returned (b) shows how seemingly unrelated
cases might connect two distinct clusters of relevant legal cases on abortion. (c) shows an overview of cases related to a search for
�American flag�. Relevant clusters of cases can be identified by examining case details. (d) shows how the structure of a network might give
clues on the relevance of a case. Here we selected a case containing the word �evolution�, but the actual cluster of cases related to evolution

958 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

4.2 Reasoning: Show me why this cited case is
relevant to my case

One complexity of interpreting the citation graph is that decisions
often cite other decisions that may seemingly have nothing to do
with the semantic content. Consider this case study example of an
analyst searching for decisions involving the keywords, �abortion�.
He arrives upon a potentially interesting case (Zhong v. US Dept of
Justice; the focus in Fig. 4b) of a person attempting to receive
asylum in the US due to the practice of forced abortion in his home
country. The decision curiously cites a case about illegal stock
manipulation (Chenery vs SEC, annotated �Financial Case�), which
initially seems to have very little to do with a decision about
abortion. This case, which never mentions the word �abortion�, is
inside the DOI graph since it is the source node�s indirect neighbor
and is a heavily cited Supreme Court case, while some of its
neighbors matched the initial search term. Upon reading the full text
of the document, a feature available in our system, the analyst reads
the description of why this particular citation exists ("a judicial
judgment cannot be made to do service for an administrative
judgment�). However, this cryptic statement does not resolve the
analysts concerns and he wants to figure out why this case is cited.

Fortunately, DOI graphs are able to utilize this seemingly
unrelated hub to search outward for additional abortion cases. In fact,
two different decisions that match the user�s search of �abortion� also
cite the stock manipulation case (in the group labelled �main abortion
cluster in Fig. 4b). These new abortion cases are inside the DOI
graph because they both matched the analyst�s keywords and have a
highly cited Supreme Court case (the financial case) as neighbour.
By examining the rulings of these new abortion cases in detail the
analyst is able to conclude that the context for this citation is the
extent to which government entities can interpret law and
retroactively set rules. As an added bonus the analyst has discovered
a separate cluster of rulings on abortion cases that are not directly
connected to the main cluster.

4.3 Overview: Show me an overview of this subfield
DOI graphs can also be used to provide an overview of the context
surrounding a node of interest. In this example, the legal analyst
searched for all decisions involving the key words �American Flag�.
Since the user is interested in seeing a range of cases involving
American flags, the interest sliders are adjusted to give more
preference to matched keywords and less interest to a priori
attributes like in-degree and level of court. From the search results,
the analyst selects a focus case (Troster v. Pennsylvania) about an
employee who refused to wear a flag on his uniform. The resulting
DOI graph (Fig. 4c), is a dense graph but by examining the cases in
detail we can still identify a number of conceptual clusters. First, it
clearly shows the source node�s connections to important Supreme
Court decisions about American flags, including Texas v. Johnson

(constitutionality of flag burning) and Spence v. State of Washington
(constitutionality of displaying flags with superimposed images).
Second, the DOI graph highlights a variety of other lower court flag-
cases not necessarily connected to the source, which deal with
decisions that force students to salute flags, destroying flags for
commercial purposes, and other cases of flag mutilation. However,
on the other side of the graph, there are a variety of cases that have
nothing to do with flags, but do revolve around the theme of the
freedom to express oneself. So even though these decisions were not
explicitly about flags, their arguments are critical to the flag cases.
Even though we told the server to return a small 25 node context we
can clearly group cases into relevant clusters.

Log degree distribution

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Degree (x100)

Co
un

t (
lo

g)

4.4 Relevance: Show me if this case is what I think it is
This last scenario is an example where DOI graphs can help you
understand the relevance, or lack thereof, of your selected search
node. A legal analyst conducted a search using the term �evolution�
to discover decisions dealing with this biological theory. Similar to
the previous scenario, the analyst adjusted the interest sliders to give
more preference to matched keywords (UI), as the user was
interested in cases about evolution. At the same time, less weight
was given to the distance component of the DOI function. The
analyst sorted the search results by date, and selects a recent case that
is in the result list (Rockstead v. Crystal Lake). The resulting graph is
quite peculiar, as the DOI graph brings in a cluster of �evolution�-
matched decisions (labeled �Evolution vs Creationism Cluster� in
Fig. 4d), but they are 7 degrees away. Upon closer inspection, it
seems the original source node has nothing to with the biological
theory of Evolution, but instead the �evolution of common law�. The
resulting picture made the analyst realize that the selected case had
no �evolution�-based context in the legal graph, and that perhaps the
selected case was not what the analyst was seeking after all.

Fig. 5. Log-degree distribution of the case citation graph. Citation
count includes both in and out citations.

We have presented several stories of how DOI graphs allow analysts
to dig through very large and dense citation graphs. Although this
anecdotal evidence should obviously be confirmed through more
rigorous evaluation techniques such as long-term field studies (e.g.
[16]) with a broad field of actual experts, these initial explorations
were encouraging. Without the use of interest functions to make
these otherwise dense graphs legible, or using only the currently
available textural search tools it is doubtful the analyst would have
made some of the observations above.

5 DISCUSSION & FUTURE WORK
We have demonstrated how degree of interest can be used to
effectively navigate large and highly connected graphs. However,
there are still many outstanding challenges to support the analytical
needs of users. Although we have chosen legal citations as data
domain, there are many other data domains where this approach
might be useful. In social network visualization, ego-centric views of
the network are common and this approach fits well with that
paradigm. Internet browsing could be enhanced by providing a user a
local map around the visited page, using the user�s current
information needs as input to an interest function.

We assumed that the user selects a single node as the focus, but
we can very well generalize these ideas to multiple foci. That is, if a
user selects multiple nodes in the graph, can we show a fixed size
interesting (and connected) subgraph containing these nodes?
Running our localized greedy algorithm no longer guarantees
connectedness, but approaches like [3] and [11] use the graph
topology to generate network �summaries� that capture as much as
much as possible of the basic proximity structure of the graph using
a fixed node budget. We can directly integrate these techniques in
our setup, or enhance them by taking node interest into account.

In this paper, we have defined a general framework for interest
functions but have been deliberately vague about their precise
implementation. The actual choice of properties or metrics to use for
DOI computation should depend on the task and data domain for

959VAN HAM AND PERER: “SEARCH, SHOW CONTEXT, EXPAND ON DEMAND”: SUPPORTING LARGE GRAPH…

which the visualization is intended and it is unlikely that there is an
optimal function that performs well for all domains and tasks. In our
sample scenario we have used simple measures like the values of
inherent attributes and local topology metrics for API and a keyword
match percentage for UI. We could also choose an API function that
uses global topological measurements relevant to users� tasks and
domain. For instance, social network analysis metrics such as
betweenness centrality would allow users to find bridge nodes more
easily. PageRank-like algorithms would allow users to find hub
nodes more easily. Although these metrics are generally expensive to
compute, they only have to be computed once, at startup. In a similar
manner, UI can be enhanced by reusing the history of interactions a
user has performed on the current subgraph. Keeping track of
common parameters of nodes selected as foci and nodes selected for
expansion might help us make better decisions on the intent of the
user, resulting in an adaptive DOI function and more relevant graphs.

Finally, in our visualization we are currently only showing the
immediate context of a node at the lowest level. This makes it hard
for users to orient themselves in the full information space. One
possible solution to explore is to annotate edges on the periphery of
the visible graph with distances to landmark cases in the graph, much
like road signs in real life.

On the downside of this approach, the decisions made by the DOI
based algorithms might seem abstract to the user at times. Looking
for a specific citation between two cases can be problematic, as cases
are brought in on a �most-interesting� basis. We can address this by
including some of the textual approaches used in common legal
analysis tools, and allow the user to also search for and expand
connections to particular cases.

Furthermore, with the most cited cases in the database having
over 3600 citations, some of the heavily cited procedural cases are
often included in the extracted DOI graphs, even though they might
not be that interesting from a legal perspective. Fine tuning of the
API function might be helpful in that regard. For example based on
an examination of the degree distribution (Fig. 5) we can state that
citation counts over 1600 do not add much to the information value
and we cap the API interest level for those cases. Finally, our
approach helps ameliorate some of the issues with rendering node
link diagrams for dense graphs, but does not solve them completely,
as is witnessed by Fig. 4c. Individual edges are still hard to follow in
dense clusters and node link representations simply do not do a very
good job in those cases. Possible solutions may include edge
bundling [10] or including constraints on the maximum number of
edges returned in the most interesting subgraph.

6 CONCLUSION
In this paper, we have shown that an adaptation of degree-of-interest
functions to graphs helps manage the complexity of large and dense
graphs. We advocate an additional term in the classic degree of
interest function that captures the search for a focal node. We also
introduced a method to diffuse interest over the entire graph to
mitigate local minima. Concretely, we can use degree of interest to
extract subgraphs from data residing on a centralized server and
subsequently browse them on remote clients. On the interaction side
we can use these same DOI functions to reduce the potential
complexity introduced by very high degree nodes in the graph and
simultaneously use it to visually indicate directions in which
browsing might yield interesting results. In conclusion, we believe
that an extension of the basic concept of degree of interest from tree
to graphs offers promising ways to tackle the complexity of very
large real world graphs and foresee a rich area for follow-up work.

ACKNOWLEDGMENTS
The authors wish to thank Chris Collins for his efforts in processing
and formatting the raw data.

REFERENCES
[1] S.K. Card and D. Nation. Degree-of-Interest Trees: A Component of an

Attention-Reactive User Interface. Proceedings Advanced Visual
Interfaces AVI 02, 2002.

[2] T. d'Entremont and M.-A. Storey, Using a Degree-of-Interest Model for
Adaptive Visualizations in Protégé, in Proceedings of the 9th
International Protégé Conference (extended abstract), 2006.

[3] C. Faloutsos, K.S. McCurley, and A. Tomkins. Fast discovery of
connection subgraphs. In Proc. 10th ACM SIGKDD conference, pp.
118�127, 2004.

[4] G.W. Furnas. Generalized fisheye views, In Proceedings Human
Factors in Computing Systems CHI 86, pp. 16-23 ,1986

[5] G.W. Furnas. A fisheye follow-up: further reflections on focus +
context, In Proceedings Human Factors in Computing Systems CHI 06,
pp. 999-1008, 2006.

[6] E. Gansner, Y. Koren, and S. North, Graph Drawing by Stress
Majorization, Proc. 12th Int.Symp. Graph Drawing (GD�04), LNCS
3383, pp. 239�250, 2004.

[7] E. Gansner, Y. Koren, and S. North, Topological Fisheye Views for
Visualizing Large Graphs, IEEE Transactions on Visualization and
Computer Graphics. Vol. 11 No.4 pp. 457-468, 2005.

[8] F. van Ham and J.J. van Wijk, Interactive Visualization of Small World
Graphs. In Proceedings of the IEEE Symposium on Information
Visualization, pp. 199 � 206, 2004.a

[9] J. Heer and S.K. Card. DOITrees revisited: Scalable, Space-constrained
Visualization of Hierarchical Data. Proceedings of the Working
Conference on Advanced Visual Iinterfaces AVI�04, pp. 421-424, 2004.

[10] D. Holten. Hierarchical Edge Bundles: Visualization of Adjacency
Relations in Hierarchical Data, IEEE Transactions on Visualization and
Computer Graphics, Vol. 12, No. 5, Pages 741 - 748, 2006.

[11] Y. Koren, et al. Measuring and extracting proximity in networks. In
Proc 12th ACM SIGKDD conference, pages 245-255, 2006.

[12] B. Lee, et al. TreePlus: Interactive Exploration of Networks with
Enhanced Tree Layouts. IEEE Transactions on Visualization and
Computer Graphics, vol. 12 (6), pp. 1414-1426, 2006.

[13] S. Makri. et al. Studying Law Students� Information Seeking Behaviour
to Inform the Design of Digital Law Libraries, European Conference on
Research and Advanced Technology for Digital Libraries, 2006.

[14] Palantir, http://www.palantirtech.com, Accessed May 2009.
[15] A. Perer and B. Shneiderman, Balancing systematic and flexible

exploration of social networks. IEEE Transactions on Visualization and
Computer Graphics, vol. 12 (5) pp. 693-700, 2007.

[16] A. Perer and B. Shneiderman, Integrating statistics and visualization:
case studies of gaining clarity during exploratory data analysis. In
Proceedings Human Factors in Computing Systems CHI 08, pp. 265-
274, 2008.

[17] M. Sarkar and M.H. Brown. Graphical fisheye views of graphs. In
Proceedings Human Factors in Computing Systems CHI 92 pp. 83-91,
1992.

[18] B. Shneiderman, The eyes have it: a task by data type taxonomy for
information visualizations. In Proceedings of the IEEE Symposium on
Visual Languages, pp. 336-343, 1996.

[19] B. Shneiderman and Aris, A. Network Visualization by Semantic
Substrates. IEEE Transactions. on Visualization and Computer
Graphics, Vol. 12, No. 5, pp. 733-740, 2006.

[20] M.A. Smith et al. Analyzing (Social Media) Networks with NodeXL.
Community & Technologies, 2009.

[21] S.A. Sutton. The role of attorney mental models of law in case
relevance determinations: An exploratory analysis. Journal of the
American Society for Information Science vol. 45 (3), 1994.

[22] Touchgraph LLC.. http://www.touchgraph.com. Accessed March, 2009.
[23] M. Wattenberg, Visual exploration of multivariate graphs. In

Proceedings Human Factors in Computing Systems CHI 06, pp. 811-
819, 2006.

[24] P. Zhang and L. Koppaka. Semantics-based legal citation network.
Proceedings of the 11th international conference on Artificial
intelligence and law, pp. 123-130, 2007.

960 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

