EXPLORATORY DATA ANALYSIS & ELICITATION

PETRA ISENBERG

VISUAL ANALYTICS

ANALYSIS COMPONENTS

Remember: not necessarily in this order or linear

WHY DO YOU NEED DATA?

(HINT: Usually, because you have a question you need to answer!)

ANALYSIS CIRCLE

GATHERING DATA, APPLYING STATISTICAL TOOLS, AND CONSTRUCTING GRAPHICS <u>TO</u> <u>ADDRESS QUESTIONS</u>

ASSESS <u>NEW</u> QUESTIONS

DATA IS ONLY AS GOOD AS THE QUESTIONS YOU ASK

Some people say...

WHERE DO QUESTIONS COME FROM?

WHERE DO QUESTIONS COME FROM?

STAKEHOLDERS

EXPLORATORY ANALYSIS

"EXPLORATORY DATA ANALYSIS"

(IN CONTRAST TO "CONFIRMATORY" DATA ANALYSIS)

Based on insights developed at **Bell Labs** in the 60's

Introduced a number of novel techniques for visualizing and summarizing data:

- 5-number summary
- Box plots
- Stem and leaf diagrams

EXPLORATORY ANALYSIS IS ABOUT UNDERSTANDING DATA AND CHECKING ASSUMPTIONS

- IS THE DATA CORRECT?
- DOES IT MATCH OUR PREVIOUS EXPECTATIONS?
- IS THERE **A RELATIONSHIP**?
 - A CORRELATION? A TREND? ETC.?

E.D.A. CIRCA ~1970

- Mostly done by hand (computation is expensive and inaccessible)
- Simple statistical summaries and charts

TUKEY'S 5-NUMBER SUMMARY

The sample minimum (smallest observation)

- The lower quartile
- The median (middle value)
- The upper quartile
- The sample maximum (largest observation)

WHAT'S A QUARTILE?

- Q1 = lower quartile / first quartile / 25th percentile Q2 = median / second quartile / 50th percentile
- Q3 = upper quartile / third quartile / 75th percentile

5 NUMBER SUMMARY IN R

- moons <- c(0, 0, 1, 2, 63, 61, 27, 13)
 fivenum(moons)
- $[1] \ 0.0 \ 0.5 \ 7.5 \ 44.0 \ 63.0$
- > summary(moons)

Min. 1st Qu. Median Mean 3rd Qu. Max.0.00.57.520.8844.063

 \leftarrow Note: mean added

3**6**63 feet

STEM-AND-LEAF PLOTS

	0 9 = 900 feet	0	98/00502
		1	97719630
		2	69987766544422211009850
volcano		3	876655412099551426
heights:		4	9998844331929433361107
900 feet		5	97666666554422210097731
		6	898665441077761065
1 9 57 feet		7	98855431100652108073
8 23 feet		8	653322122937
		9	377655421000493
Z ^{io} zu leel		10	0984433165212
19 3 00 feet	Stem-and-leaf displays:	11	4963201631
730 feet	heights of 218 volcanoes, unit 100 feet.	12	45421164
150 IEEC		13	47830
1 <mark>7</mark> 53 feet		14	00
6 03 feet		15	676
20 foot		16	52
Z 9 30 Leet		17	92
12 4 00 feet	(22.V2) (32.22.072))	18	5
6 50 feet	$19 \mid 3 = 19,300$ feet	19	39730

0 0 000 0

BOX PLOTS

exhibit 6 of chapter 2: various heights

Box-and-whisker plots with end values identified

A) HEIGHTS of 50 STATES B) HEIGHTS of 219 VOLCANOS Height (feet) ٨ Alaskao Lascar : Guallatiri 20,000 Kilimanjaro . Cotapax Misti Tupungatito 15,000 California Colorado . . Washington Hawaii " Wyoming 10,000 5,000 Ilha Nova Anak Krakatau Louisiana Delaware . Florida 0

EXPLORATORY ANALYSIS IS ABOUT UNDERSTANDING DATA AND CHECKING ASSUMPTIONS

- IS THE DATA CORRECT?
- DOES IT MATCH OUR PREVIOUS EXPECTATIONS?
- IS THERE **A RELATIONSHIP**?
 - A CORRELATION? A TREND? ETC.?

BUT, HOW SHOULD WE GO ABOUT DOING THIS?

ANALYSIS CIRCLE

GATHERING DATA, APPLYING STATISTICAL TOOLS, AND CONSTRUCTING GRAPHICS <u>TO</u> <u>ADDRESS QUESTIONS</u>

ASSESS <u>NEW</u> QUESTIONS

IT'S EASY TO GET SIDETRACKED TRYING TO DO COMPLICATED ANALYSES AND MISS THE BASIC STUFF

START SIMPLE

SOME FIRST STEPS TO START WITH

1. Plot the raw data

2. Plot simple statistics

DON'T TRY TO CREATE A WHOLE NEW CHART ALL AT ONCE! CHECK YOUR LOGIC AT EVERY STEP.

3. Look at plots together

LOOKING AT DATA WITH "THE PAINTER'S EYE"

J. BERTIN

EMBRACING "SLOW DATA"

STEPHEN FEW

PLOT THE RAW DATA

ARE THE FIELDS CORRECT?

# movies.csv Movie Id	Abc - movies.csv Title -	Abc movies.csv Genres	# ratings.csv User Id	# ratings.csv movield (ratings.c	# ratings.csv Rating	# ratings.csv Timestamp	=# Calculation Year
		•••••••••••••••••••••••••••••••••••••••	2	1	5.00000	859,046,895	1995.00
WHAT .	ABOUT THE DA	TA TYPES? 🛄	16	2	3.00000	849,188,326	1995.00
3	Grumpler Old Wen (1	comedypromance	2	3	2.00000	859,046,959	1995.00
4	Waiting to Exhale (1	Comedy Drama Rom	80	4	3.50000	1,253,152,402	1995.00
5	Father of the Bride P	Comedy	2	5	3.00000	859,046,959	1995.00
6	Heat (1995)	Action Crime Thriller	9	6	4.00000	842,686,600	1995.00
7	Sabrina (1995)	Comedy Romance	3	7	3.00000	841,484,087	1995.00
8	Tom and Huck (1995)	Adventure Children	156				95.00
9	Sudden Death (1995)	Action	16	WHAT	ABOUT T	HE VALUES	<mark>95.00</mark>
10	GoldenEye (1995)	Action Adventure Th	7	10	4.00000	1,322,062,970	1995.00
11	American President,	Comedy Drama Rom	3	11	4.00000	841,483,689	1995.00
12	Dracula: Dead and Lo	Comedy Horror	29	12	3.00000	840,548,213	1995.00

USE THE SIMPLEST REPRESENTATION YOU CAN TO EVALUATE ALL OF THE DATA

iii Columns	SUM(Number of Reco.
⊞ Rows	Title
	Title
	0 1 2 3
	Number of Records

CHOOSE REPRESENTATIONS THAT MAKE IT EASY TO COMPARE DIFFERENCES AND SEE PATTERNS

	Quantitative		Ordinal		Nominal	
More Accurate	Position	•.•	Position	•.•	Position	•.•
1	Length	_	Density		Hue	
	Angle	4	Saturation		Density	
	Slope	1-	Hue		Saturation	
	Area	••	Length	=	Shape	
	Density		Angle	2	Length	_
	Saturation		Slope	11	Angle	4
↓ ↓	Hue		Area		Slope	11
Less Accurate	Shape		Shape		Area	
	R					

[JACQUES BERTIN REFINED BY CLEVELAND & MCGILL THEN BY CARD & MACKINLAY]

CHOOSE REPRESENTATIONS THAT MAKE IT EASY TO COMPARE DIFFERENCES AND SEE PATTERNS

TAMARA MUNZNER

DEFAULT TO SIMPLE AND EFFECTIVE CHART TYPES

Images from Nathan Yau

SOME FIRST STEPS TO START WITH 1. Plot the raw data

2. Plot simple statistics

3. Look at plots together

CHECK SIMPLE STATISTICS

Measures

CHECK SIMPLE STATISTICS

SOME FIRST STEPS TO START WITH 1. Plot the raw data

2. Plot simple statistics

3. Look at plots together

COMPARE MULTIPLE PLOTS

iii Colu	mns	User Id 🗧 🗧					
⊞ Rows	5	AVG(Rating)	SUM(Number of Reco				
Aver	Average Rating by User						
			UserId				
	F	Maximum					
	5						
4		Standard Deviation					
	4	Average					
h.		Standard Deviation					
tating	3						
Avg. R							
	2						
	1						
	1						
	0						

UNDERSTANDING DISTRIBUTIONS

FIGURE 4-52 Heights of imaginary people, sorted from shortest to tallest

SOME SIMPLE DISTRIBUTIONS

UNIFORM

NORMAL

REPEATED MEASURES, VARIATION IN POPULATIONS, ETC.

EXPONENTIAL

DURATIONS BETWEEN EVENTS, ETC.

DISTRIBUTIONS AND SOME COMMON MEASURES OF CENTRAL TENDENCY

COMMON DISTRIBUTIONS

https://blog.cloudera.com/blog/2015/12/common-probability-distributions-the-data-scientists-crib-sheet/

http://www.math.wm.edu/~leemis/chart/UDR/UDR.html

DISTRIBUTIONS OVER TIME

IDENTIFYING TRENDS CONSTANT PERIODIC ENPOWENTIAL LINEAR

COMBINATIONS

COMPARISON AGAINST A KNOWN BASELINE

COMPARING TWO MEASURES

IDENTIFYING CORRELATIONS

COMPARING TWO MEASURES

ATTR(Year)
T Year

ANY HYPOTHESES?

QUESTIONS FROM STAKEHOLDERS

ELICITATION

ELICITATION

= GATHERING INFORMATION DIRECTLY FROM PEOPLE

ELICITATION IN RELATED FIELDS

In Human-Computer Interaction

We've never "seen" it before

- We've never "seen" it before
- We aren't the people using it

- We've never "seen" it before
- We aren't the people using it
- We can't anticipate how people will use it

- We've never "seen" it before
- We aren't the people using it
- We can't anticipate how people will use it

WHY IS ANALYSIS HARD?

ARE THERE PROCESSES THAT CAN BE FOLLOWED?

THE USER-CENTERED APPROACH

- early focus on users and tasks
- empirical measurement
- iterative design

FOUR BASIC ACTIVITIES

- 1. establishing requirements
- 2. designing alternatives
- 3. prototyping
- 4. evaluating

THE DESIGN LIFECYCLE

- what human values do we wish to design for?
- what are the various morale, personal, and social impacts of the proposed system?

HOW DOES THIS AFFECT ME?

YOU ARE AN ANALYTIC TOOL DESIGNER / DEV? \rightarrow You will go through this cycle

YOU ARE THE ANALYST → You will go through a version of this cycle

For you to think about: How does the design life cycle relate to the analysis cycle we looked at earlier?

BACK TO: ELICITATION

Or .. Establishing requirements

1) IDENTIFY STAKEHOLDERS

STAKEHOLDERS

Anyone who is affected by your data analysis project or might have a strong interest in it

> Owners Deciders Doers Consumers

EXAMPLE

Sales Data

Recommend the most worthwhile advertisement on social media: what kind of advertisement to whom and when?

Anticipated impact: Send specific ads to specific platforms at specific times targeted to specific people based on your recommendation

Who are potential stakeholders?

- The person who hired you
- The person who is responsible for ads in the company
- The people who have to implement you recommendations
- The database people delivering data to you
- Other departments who might want to use your recommendations
- Governments, e.g. if you might invade someone's privacy

IDENTIFY THE MOST IMPORTANT STAKEHOLDERS

The list can get very large

Which people will most affect your project or benefit from your project

QUESTIONS TO IDENTIFY KEY STAKEHOLDERS

- 1) Is the stakeholder importantly impacted by your work or strongly impacts your work or performance?
- 2) Can you identify what you want from the stakeholder?
- 3) Do you want a dynamic relationship with the stakeholder?
- 4) Can you exist without or easily replace the stakeholder?
- 5) Have you already included the stakeholders in another group of people?

2) ELICIT INFORMATION

FROM STAKEHOLDERS

LEARN MOTIVATIONS & EXPECTATION FOR YOUR ANALYSIS

Goal

STEPS

- Articulate concrete descriptions of stakeholders (roles in analysis, interests, ...)
- Use these descriptions to determine which types of questions you need to ask them

RESEARCH METHODS

observing and/or interviewing stakeholders of your analysis

- find out what current analysis methods they use, what data they have, what they really need (depending on their role)
- go from abstract stakeholders \rightarrow real people with real needs

example: if you are doing an analysis to aid the sales department target their sales, observe them in how they currently do this

IF YOU CAN'T MEET STAKEHOLDERS

- carefully select and interview their representatives
- MUST be people with direct contact with stakeholders and intimate knowledge and experience of their needs and what they do
- people who work with them are the best

Example:

talk to front-line sales staff about their customers if you cannot observe or talk to customers directly. Better: interview/observe front-line staff as they deal with customers

IF ALL ELSE FAILS

make your beliefs about the stakeholders and their needs explicit

- if you cannot get in touch with stakeholders or their representatives
- use your team to articulate their assumptions about stakeholders and their needs/tasks
- risk: resulting descriptions do not resemble reality → only use as last resort
RESEARCH METHODS

categories and examples (there are more methods than just these)

From: Moggridge – Designing Interactions

RESEARCH METHODS

from the analyst's perspective:

- **observe**: stakeholders and their behavior in context
- **engage**: interact with and interview stakeholders
- **immerse**: experience what stakeholders experience

OBSERVATION METHODS

Look

(SOME) OBSERVATION METHODS

- A Day in the Life
- Behavioral Archaeology
- Behavioral Mapping
- Fly on the Wall
- Guided Tours
- Personal Inventory
- Rapid Ethnography
- Shadowing
- Social Network Mapping
- Still-Photo Survey
- Time-Lapse Video

GENERAL OBSERVATION METHODS

- natural
 - no interference from the investigator
- controlled
 - the investigator sets a task and observes it being carried out
- participatory
 - the investigator actively joins in the activity being observed to gain a firsthand activity

ASK THEM TO HELP

Ask

WHEN LOOKING IS NOT ENOUGH...

- LOOKing gives you great insight into the state of the world
- but it doesn't tell you <u>why</u> people are acting the way they do, or what their goals, needs, or feelings are

PROBLEMS WITH ASKING

- people can be unduly influenced by cultural context (hype), and what they think you expect them to say (this rocks!) (remember the iphone 5 video I showed you)
- people may lie—deliberately to save face (embarrassment, cultural / polite)
- people may lie-their boss is around

WAIT, ARE PEOPLE COMPLETELY USELESS?

people are really good at telling us a few things:

- what they are <u>doing</u> right now.
- how they are <u>feeling</u> right now.
- what their <u>goal</u> is right now.

IDEALLY, COMBINE INTERVIEW WITH OBSERVATION

- watch people in their own environment
- watch people do everyday tasks

- opportunities for new questions arise from:
 - workarounds
 - breakdowns
 - unexpected uses of existing tools/methods

(SOME) ASKING METHODS

- Camera Journal
- Card Sort
- Cognitive Maps
- Collage
- Conceptual Landscape
- Draw the Experience
- Extreme User Interviews
- Five Whys?
- Foreign Correspondents
- Narration
- Surveys & Questionnaires
- Unfocus Group
- Word-Concept Association

METHOD: INTERVIEWS

Types:

- Unstructured exploratory and in-depth
- Structured are scripted with pre-written questions
- Semi-structured guided by a script but can become more open as it progresses
- Group (focus groups) allows diversity and more views/issues to be raised and reflected on

METHOD: INTERVIEWS

Two question types

- 'closed questions' have a predetermined answer format, e.g., 'yes' or 'no'
- 'open questions' no predetermined format

TYPES OF QUESTIONS

- What has been tried before?
- How did it turn out?
- What do you think needs to be done?

METHOD: SURVEYS & QUESTIONNAIRES

- ask a series of targeted questions in order to ascertain particular characteristics and perception of users
- this is a quick way to elicit answers from a large number of people

example:

developing a new gift-wrap packaging concept the IDEO team conducted webbased surveys to collect consumer perspectives from many people around the world

SURVEYS & QUESTIONNAIRES

very popular method

- good for finding out about attitudes, values, opinions, likes and dislikes
- can be administered to large populations, web-based, paper or email
- sampling can be a problem when size of population is unknown
- can be offputting to people if appears too long
- 40% response rate is high, 20% is often acceptable

QUESTIONNAIRE CONTENT

- be clear on the goal
- open and closed questions
 - What do you think about X?
 - Which of the following are things you might use?
 - a, b, c, d, e
- rating scales
 - I think X is a good idea
 - 1 strongly disagree to 5 strongly agree
- be sure to pilot your questionnaire

QUESTIONNAIRE DESIGN

how it is structured is key

- impact of a question can be influenced by its order
- strike a balance between using white space and keeping the questionnaire compact
- decide whether phrases will all be positive, all negative or mixed
- providing check boxes and drop down menus to choose from makes it easier to fill in
- open-ended questions allow for more interview-like comments

ASK & LOOK

Often observations and asking are combined

METHODOLOGY: ETHNOGRAPHY

- collection of methods
- includes field work done in natural settings
 - Spend as much time as you can with people relevant to the design topic.
 - Establish their trust in order to visit and/or participate in their natural habitat and witness specific activities
- study of the large picture
 - get more complete context of activities
 - get objective perspective with rich description of people, environments, and interactions
 - use a "wide-angle research lens"
- goal: elicit user requirements that would be hard for a typical user to articulate
- very (!) time intensive

ETHNOGRAPHIC METHOD: CONTEXTUAL INQUIRY

- combining "looking" and "asking" by immersing oneself into a particular context/culture: *understand mental models and work practices*
- "the core premise of Contextual Inquiry is very simple:
 - go where the customer works,
 - observe the customer as he or she works, and
 - <u>talk</u> to the customer about the work.

do that, and you can't help but gain a better understanding of your customer."

AFTER HAVING DONE ALL THIS...

What's next?

IDENTIFY DATA & VARIABLES FOR YOUR ANALYSIS

FIND OUT IF STAKEHOLDERS AGREE ABOUT THE PROBLEM YOU WILL TRY TO ADDRESS

From: © Coursera