
REPRODUCIBLE RESEARCH PROVENANCE

PETRA ISENBERG

VISUAL ANALYTICS

MANY MODELS FOR ANALYSIS

WHAT DO THEY HAVE IN COMMON?

IN THIS LECTURE

YOU WILL LEARN ABOUT

COMMUNICATING YOUR PROCESS

DETAILS

DIFFICULTIES

HOW TO CONVEY THE ANALYSIS PROCESS?

IN WORDS – TELL IT

PROVIDING DETAIL: CODE, DATA, ...

GENERATE / WRITE REPORTS

WHY CONVEY THE ANALYSIS PROCESS?

SHOW YOUR FINDINGS ARE ROBUST

HIGHLIGHT SUBJECTIVITY

ENABLE IMPROVEMENTS

HELP SOMEONE LEARN ANALYZING

NOT EASY TO DESCRIBE

PEOPLE MAY NOT UNDERSTAND YOU

LONG ANALYSIS PIPELINES

LOTS OF TRIAL AND ERROR IN ANALYSIS

LETS FIRST DISCUSS TWO MAIN CONSIDERATIONS...

REPLICATION VS. REPRODUCIBILITY

REPLICATION

ABILITY OF AN ENTIRE EXPERIMENT / STUDY TO BE DUPLICATED WITH INDEPENDENT / NEW

DATA INVESTIGATORS ANALYSIS METHODS

...

Science 2 December 2011: Vol. 334 no. 6060 pp. 1226-1227 DOI: 10.1126/science.1213847 + Coursera MOOC – Reproducible Research ULTIMATE STANDARD FOR STRENGTHENING SCIENTIFIC EVIDENCE

REPLICATION WHY?

CHECK IF A FINDING IS ROBUST IS THIS CLAIM TRUE?

ESPECIALLY IMPORTANT WHEN STUDIES HAVE BROAD IMPACT (E.G. ON SOCIETY)

REPLICATION WHEN?

BUT SOMETIMES YOU CAN'T REPLICATE BECAUSE

- YOU DON'T HAVE THE TIME
- OR THE MONEY
- OR THE RESOURCES
- OR THE SITUATION IS UNIQUE

e.g. how would you replicate the Sloan Digital Sky Survey?

IF YOU CAN'T REPLICATE?

WHAT ELSE CAN YOU DO?

LET A STUDY/AN ANALYSIS STAND BY ITSELF?

Do Nothing

Replication

IF YOU CAN'T REPLICATE?

WHAT ELSE CAN YOU DO?

LET A STUDY/AN ANALYSIS STAND BY ITSELF?

REPRODUCIBILITY

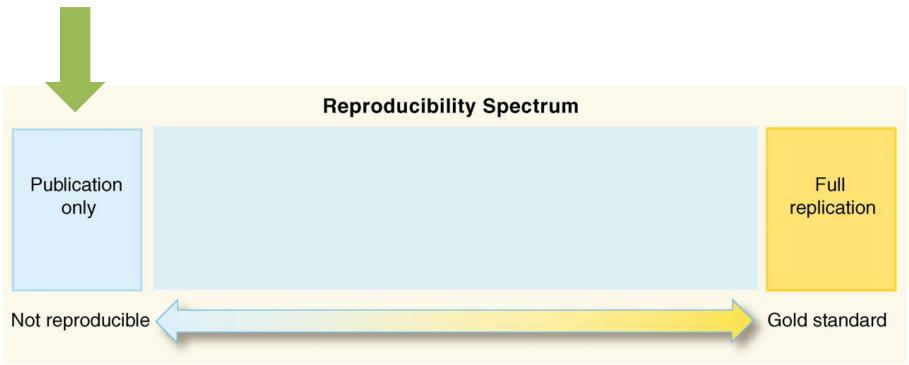
REPRODUCIBILITY

ASKS: CAN WE TRUST THIS ANALYSIS?

/SHOULD/ BE MIN STANDARD FOR ANY SCIENTIFIC STUDY

NEW INVESTIGATORS: SAME DATA, SAME METHODS

 \rightarrow ALLOW FOR VALIDATION OF THE DATA ANALYSIS


WHY?

ANOTHER VIDEO FOR YOU TO LOOK AT AT HOME

https://www.youtube.com/watch?v=eV 9dcAGaVU8

("DECEPTION AT DUKE")

ANALYSIS (INCL. DATA COLLECTION, CLEANING, ANALYTIC METHODS, FIGURES, ...)

Roger D. Peng Science 2011;334:1226-1227

ANALYSIS (INCL. DATA COLLECTION, CLEANING, ANALYTIC METHODS, FIGURES,)

Roger D. Peng Science 2011;334:1226-1227

MAKE YOUR DATA AVAILABLE

MAKE YOUR ANALYSIS METHODS AVAILABLE

DOCUMENT CODE AND DATA

USE STANDARD MEANS OF DISTRIBUTION

WHO IS INVOLVED?

ANALYSTS WHO WANT TO MAKE THEIR WORK REPRODUCIBLE

READERS WHO WANT TO REPRODUCE (OR BUILD ON) THE PREVIOUS ANALYSIS

WHAT ARE GOOD TOOLS FOR ANALYSTS? DOCUMENTATION IS TIME-CONSUMING NEEDS RESOURCES (WEB SERVERS, ETC.)

WHAT ARE GOOD TOOLS FOR REPRODUCTION?

HOW TO PIECE TOGETHER DATA & CODE TRYING TO UNDERSTAND WHAT HAPPENED

REPRODUCIBILITY

CONCEPT IMPORTANT TO ANYONE CONDUCTING AN ANALYSIS

BUT: THERE IS NO AGREED-UPON NOTATION FOR WRITING "INSTRUCTIONS"

REPRODUCIBILITY

For coding environments – like R

BE ORGANIZED!

YOU WILL DEAL WITH

- DATA (RAW + PROCESSED)
- FIGURES (EXPLORATORY + FINAL)
- CODE (RAW, UNUSED, FINAL, BUGGED, DEBUGGED, ...)
- TEXT (README FILES, ANALYSIS REPORT, DOCUMENTATION)

SHOULD BE STORED IN YOUR ANALYSIS FOLDER

SHOULD COME WITH README IF ACCESSED FROM WEB, INCLUDE URL, DESCRIPTION, AND DATE ACCESSED

PROCESSED DATA

REMEMBER YOUR DATA CLEANING EXERCISES?

SOMETIMES YOU NEED TO TRANSFORM DATA

- NAME PROCESSED DATA TO KNOW WHICH SCRIPT GENERATED IT
- MAKE A README THAT SAYS WHICH SCRIPT/PROCEDURE GENERATED THE FILE
- PROCESSED DATA SHOULD BE READY FOR ANALYSIS

BAD EXAMPLE

0	coocurrence-author-level1.npy	3/20/2014 4:33 PM	NPY File	54,947 KB
0	coocurrence-author-level1-final clean.npy	3/20/2014 4:55 PM	NPY File	53,998 KB
0	coocurrence-author-level2.npy	5/7/2014 10:11 AM	NPY File	191 KB
0	coocurrence-PCS-all.npy	5/7/2014 10:11 AM	NPY File	127 KB
0	doc-term-level1.npy	3/20/2014 4:26 PM	NPY File	21,527 KB
0	doc-term-level1-final clean.npy	3/20/2014 4:48 PM	NPY File	21,341 KB
0	doc-term-level2.npy	5/7/2014 10:11 AM	NPY File	1,267 KB
0	equivalencematrix.npy	3/17/2014 1:06 PM	NPY File	54,039 KB
0	ieeecoocurrence.npy	2/11/2014 10:34 AM	NPY File	29,434 KB
0	inclusionmatrix.npy	3/17/2014 1:06 PM	NPY File	54,039 KB
	inspec-controlled-coocurrence.npy	2/11/2014 1:31 PM	NPY File	10,369 KB
0	Matrix5.npy	3/10/2014 1:24 PM	NPY File	54,988 KB
0	Matrix5npy.npy	3/10/2014 12:46 PM	NPY File	54,988 KB
0	Matrix6.npy	3/10/2014 1:24 PM	NPY File	54,988 KB
0	Matrix6npy.npy	3/10/2014 11:52 AM	NPY File	54,988 KB
0	Matrix7.npy	3/10/2014 1:24 PM	NPY File	54,988 KB
0	Matrix7npy.npy	3/10/2014 11:52 AM	NPY File	54,988 KB
0	Matrix8.npy	3/10/2014 1:24 PM	NPY File	54,988 KB
0	Matrix8npy.npy	3/10/2014 11:52 AM	NPY File	54,988 KB
0	Matrix9.npy	3/10/2014 1:24 PM	NPY File	54,988 KB
0	Matrix9npy.npy	3/10/2014 11:52 AM	NPY File	54,988 KB
_				

FIGURES

YOU WILL GENERATE MANY THAT YOU DON'T NEED

MAKE THE FINAL FIGURES PRETTY, USE PROPER LABELING AND COLOR, POSSIBLY CAPTIONS

authorkeywordGraph.ai
 authorkeywordGraph.pdf
 authorkeywordGraph.svg
 authorkeywordGraph.svgz
 authorKeywordGraph2.ai
 authorKeywordGraph2.pdf

also name them properly

SCRIPTS

CLEARLY COMMENT YOUR FINAL SCRIPTS WHAT, WHEN, WHY, HOW THROUGHOUT BIGGER COMMENT BLOCKS FOR WHOLE SECTIONS

INCLUDE PROCESSING DETAILS

CLEAN THE SCRIPT ONLY INCLUDE CODE FOR FINAL ANALYSIS

GENERAL RECOMMENDATIONS

KEEP TRACK OF WHAT YOU'RE DOING E.G. USE VERSION CONTROL SYSTEMS

SAVE AS MUCH CODE AS POSSIBLE AS LITTLE OUTPUT AS NECESSARY

SAVE DATA IN NON-PROPRIETARY FORMATS

IT TAKES A LOT OF EFFORT TO MAKE DATA/RESULTS AVAILABLE

READERS MUST FIND YOUR STUFF AND PIECE IT TOGETHER

TYPICALLY DATA, CODE, TEXT ARE NOT LINKED

LITERATE PROGRAMMING

LITERATE PROGRAMMING

explanation of the program logic in a natural language, such as English, interspersed with snippets of macros and traditional source code (Wikipedia)

YOU WRITE CODE TO DO AN ANALYSIS COMPUTE RESULTS GENERATE DATA TABLES

...

YOU ALSO WRITE A DOCUMENT – TEXT CHUNKS SURROUNDING YOUR ANALYSIS CODE EXPLAIN YOUR ANALYSIS FORMAT YOUR RESULTS

LITERATE PROGRAMS

USE A DOCUMENTATION LANGUAGE (HUMAN READABLE)

USE A PROGRAMMING LANGUAGE (MACHINE READABLE)

HAVE A PRE-PROCESSOR THAT: WEAVES THE DOC TO PRODUCE HUMAN-READABLE DOCUMENTS (PDF, HTML, ...) TANGLES THE DOC TO PRODUCE MACHINE-READABLE DOCUMENTS

EXAMPLES

FIRST: WEB (BY DONALD KNUTH, 1981): PASCAL + TEX

SWEAVE: R + LATEX

KNITR: R + LATEX, MARKDOWN, HTML

The R Series

Dynamic Documents with R and knitr Second Edition

Yihui Xie


```
1 - ---
 2 title: "Mayhem at DinoFunWorld"
 3 author: "Petra Isenberg"
   date: "October 5, 2015"
 4
    output: html_document
 5
 6 - ---
 7
    #Merging Data Files with R
 8
 9
10
    ##Loading Files
11
12 First we will load a file that contains attractions, their ids, and coordinates in the park
13 \cdot 13 \cdot r
    coordinates <- read.csv("ParkCoordinates.csv")</pre>
14
    head(coordinates)
15
16 -
17
18 Next we will load our data from the data cleaning exercise
19 + \dots \{r\}
20 attractions <- read.csv("AttractionsOCR-txt.csv")</pre>
21 head(attractions)
22 - ```
23
```

Mayhem at DinoFunWorld

Petra Isenberg

October 5, 2015

Merging Data Files with R

Loading Files

First we will load a file that contains attractions, their ids, and coordinates in the park

```
coordinates <- read.csv("ParkCoordinates.csv")
head(coordinates)</pre>
```

##		Attraction	AttractionID	х	У
##	1	Wrightiraptor Mountain	1	47	11
##	2	Galactosaurus Rage	2	27	15
##	3	Auvilotops Express	3	38	90
##	4	TerrorSaur	4	78	48
##	5	Wendisaurus Chase	5	16	66
##	6	Keimosaurus Big Spin	6	86	44

Next we will load our data from the data cleaning exercise

```
attractions <- read.csv("AttractionsOCR-txt.csv")
head(attractions)</pre>
```

##		AttractionID	ParkArea	Attraction	CategoryNames
##	1	1	Coaster Alley	Wrightiraptor Mountain	Thrill Rides
##	2	2	Coaster Alley	Galactosaurus Rage	Thrill Rides
##	3	3	Tundra Land	Auvilotops Express	Thrill Rides
##	4	4	Wet Land	TerrorSaur	Thrill Rides
##	5	5	Tundra Land	Wendisaurus Chase	Thrill Rides
##	6	6	Coaster Alley	Keimosaurus Big Spin	Thrill Rides

TEXT AND CODE ALL IN ONE PLACE ORDER IS MAINTAINED

RESULTS ARE AUTOMATICALLY UPDATED WHEN DATA CHANGES

CODE NEEDS TO RUN TO PRODUCE THE DOCUMENT

PROS & CONS

DOCUMENTS CAN BECOME DIFFICULT TO READ

WHEN THERE IS A LOT OF CODE

CAN BE SLOW BUT YOU CAN USE THINGS LIKE CACHING

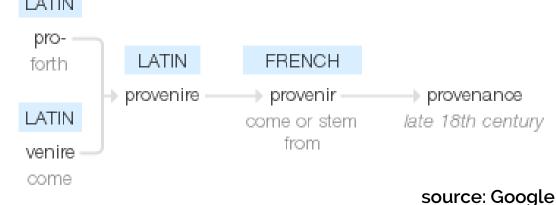
REPRODUCIBILITY

Is this all we need to understand an analysis and its results?

WHAT ABOUT?

HUMAN PROCESSES SUCH AS

INTERACTIONS WITH GUI SYSTEMS RESOURCE SHARING/COORDINATION INSIGHTS AND HYPOTHESES PRODUCED


PROVENANCE

A broad concept of "history" in the analysis process

DEFINITION

"ORIGIN, SOURCE"

"THE HISTORY OF OWNERSHIP OF A VALUED OBJECT OR WORK OF ART OF LITERATURE"

PROVENANCE IN VISUAL ANALYTICS

PROVENANCE OF: DATA VISUALIZATION INTERACTIONS INSIGHTS RATIONALE

Characterizing Provenance in Visualization and Data Analysis: An Organizational Framework of Provenance Types and Purposes

Eric D. Ragan, Alex Endert, Jibonananda Sanyal, and Jian Chen

Abstract-While the primary goal of visual analytics research is to improve the quality of insights and findings, a substantial amount of research in provenance has focused on the history of changes and advances throughout the analysis process. The term, provenance, has been used in a variety of ways to describe different types of records and histories related to visualization. The existing body of provenance research has grown to a point where the consolidation of design knowledge requires cross-referencing a variety of projects and studies spanning multiple domain areas. We present an organizational framework of the different types of provenance information and purposes for why they are desired in the field of visual analytics. Our organization is intended to serve as a framework to help researchers specify types of provenance and coordinate design knowledge across projects. We also discuss the relationship between these factors and the methods used to capture provenance information. In addition, our organization can be used to guide the selection of evaluation methodology and the comparison of study outcomes in provenance research.

___ **+** __

Index Terms- Provenance, Analytic provenance, Visual analytics, Framework, Visualization, Conceptual model

1 INTRODUCTION

Data visualization and visual analytics combine the power of vi-business and financial analysis activities [37]. These are just a few sualization with advanced data analytics contonue to power or vi-sualization with advanced data analytics to help people to better understand data and discover meaningful insights. While the goal support provenance across a wide range of domains and for different of visualization research is ultimately to improve the quality of purposes. insights and findings, analytic processes are complicated activities designs, and interaction techniques. Visualization systems must [92, 52, 42].

to supporting provenance, which broadly includes consideration for and visualization, and then provides graphical representations of the tion and data analysis. workflow through a combination of node diagrams and intermediary visual outputs [5, 14]. Groth and Streefkerk [39] presented another example with a system for recording and annotating stages of view of the data sets that contributed to the creation of map visualizations. Focusing on the provenance of insights, Gotz and Zhou described how the HARVEST system records the history of semantic actions during

- Eric D. Ragan is with Texas A&M University. E-mail: ragane@acm.org. Alex Enders is with Georgia Tech. E-mail: enders@gatech.edu.
- Jibonananda Sanyal is with Oak Ridge National Laborators: E-mail: sanyalj@ornLgov
- Jian Chen is with University of Maryland, Bakimore County. E-mail: iichen@umbc.edu.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of publication xx Aug. 2015; date of current version 25 Oct. 2015. For information on obtaining reprints of this article, please send e-mail 10: 1vcg@computer.org.

As the body of research and existing tools has grown, the commuinvolving technology, people, and real work environments. Practical nity's knowledge of the many factors and goals relevant for effective applications encounter problems that extend beyond the integration provenance support has also broadened. However, the variety of of any system's analytic models, processing power, visualization perspectives can make it challenging to assess the specific aspects designs, and interaction techniques. Visualization systems must also support human processes, which often involve non-standardized The term, provenance, has been used in a variety of ways to describe methodologies including extended or interrupted periods of analysis, different types of origins and histories. For example, the scientific resource sharing and coordination, collaborative work, presentation to different levels of management, and attempts at reproducible analyses workflow (e.g., [34]), while other interpretations focus on the history For these reasons, a substantial amount of research in the areas of of insights and hypotheses (e.g., [70]). Although many researchers visualization, data science, and visual analytics has been dedicated proactively provide clear definitions and explanations of their foci in the provenance research, this does not entirely resolve the challenge the history of changes and advances throughout the analysis process (e.g., [34, 73, 37, 21]). It is clear that the research community agrees on the importance of supporting provenance, and many scholars become problematic for interpreting and coordinating outcomes from have developed tools and systems that explicitly aim to help ana- different provenance projects, for communicating ideas within the lysts record both computational workflows (e.g., [21, 5, 71]) and visualization community, and for allowing new-corners to clearly reasoning processes (e.g., [26, 37]). For example, VisiTrails tracks understand the research space. In our work, we analyzed the different steps of the computational workflow during scientific data analysis perspectives of provenance that are most relevant to areas of visualiza-

Our goal in this paper is to organize the different types of provenance information and purposes for why they are desired in information visualization, scientific visualization, and visual analytics manipulations during a 3D molecule-inspection task. As another example, Del Rio and da Silva [22] designed Probe-It to keep track and purposes. Further, we discuss the relationships between these factors and considerations when capturing provenance information Our organizational framework is intended to help researchers specify types of provenance and coordinate design knowledge across projects In addition, our organization can be used to guide the selection of evaluation methodology and the comparison of study outcomes in provenance research.

2 EXISTING PERSPECTIVES OF PROVENANCE

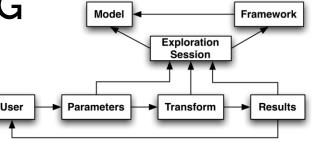
Analytic provenance is a broad and complex concept within the areas of information visualization, data analysis, and data science. In visual data analysis, the concept often includes aspects of the cognitive and interactive processes of discovery and exploration, and also the computational sequences and states traversed to arrive at findings or insights. Prior surveys have presented definitions, categorizations

PROVENANCE OF DATA

HISTORY OF CHANGES AND MOVEMENT OF DATA

SUBSETTING, MERGING, FORMATTING,...

COUPLED WITH WORKFLOWS CAPTURES ACTIONS ON DATA

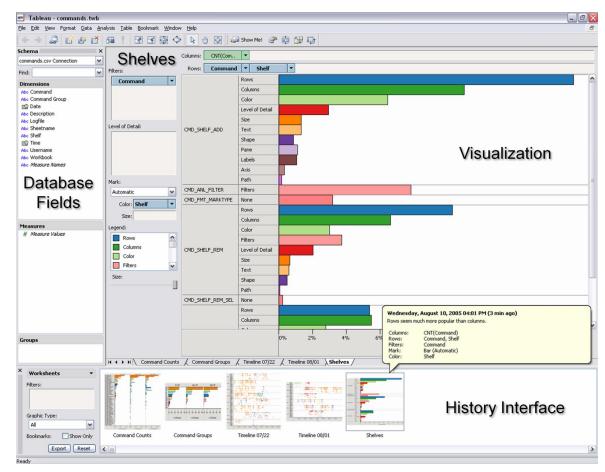

PROVENANCE OF VISUALIZATION

HISTORY OF GRAPHICAL VIEWS AND VISUALIZATION STATES

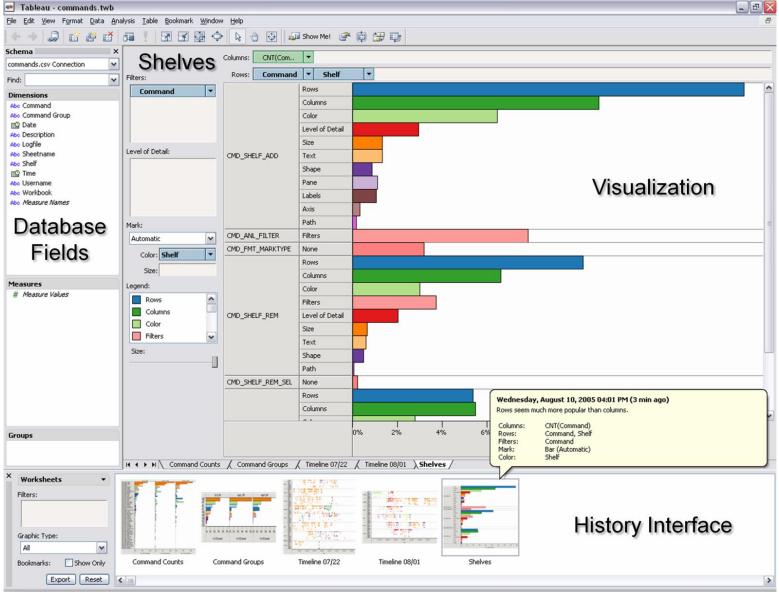
SAVE SCREENSHOTS OR PARAMETERS TO RECREATE VIEWS/STATES

VISUALIZATION STATES

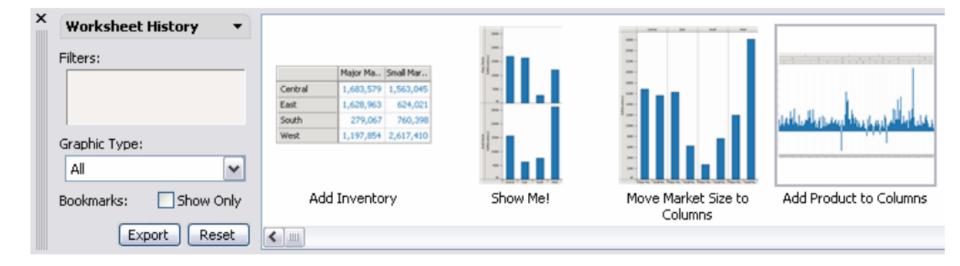
DESCRIBE VISUALIZATION AS CHAIN OF VISUAL ENCODING OPERATORS

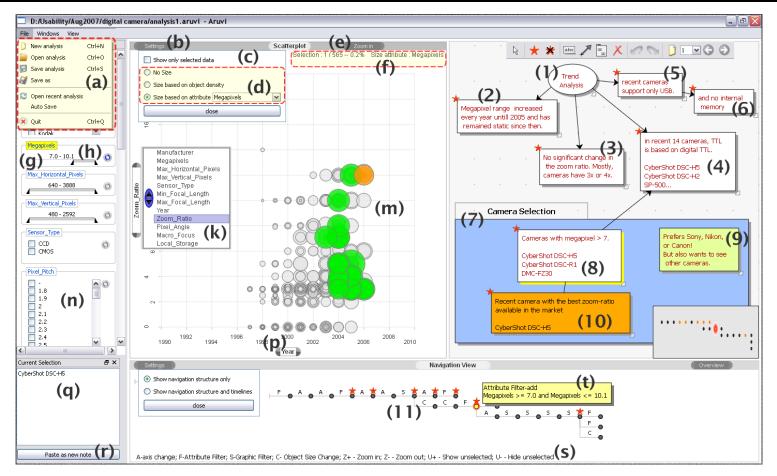


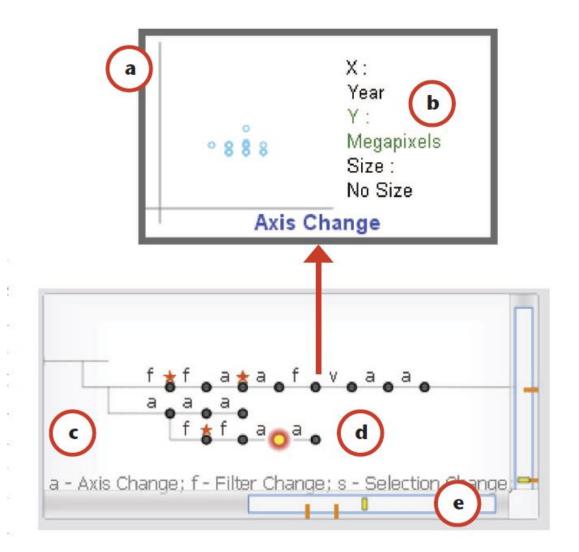
P-SET MODEL:


STATE = SET OF PARAMETERS & ACTIONS AS TRANSFORMATIONS OF THESE PARAMETERS

A Model and Framework for Visualization Exploration T.J. Jankun-Kellym TVCG 2007

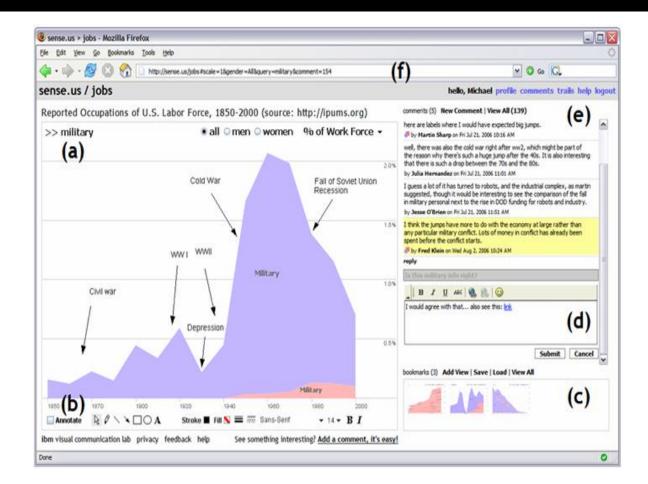

VISUALIZATION STATES


Heer et al. Graphical Histories for Visualization: Supporting Analysis, Communication, and Evaluation. InfoVis 2008.


Ready

VISUALIZATION STATES

Shrinivasan and van Wijk. Supporting the Analytical Reasoning Process in Information Visualization. CHI 2008.

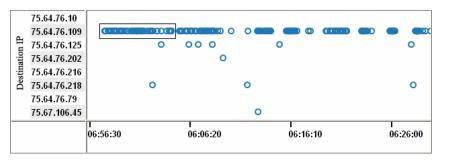

PROVENANCE OF INTERACTIONS WITH A GUI/VIS

HISTORY OF USER INTERACTIONS/COMMANDS

INCLUDES

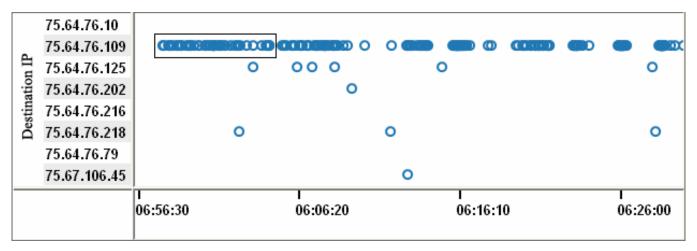
DATA EXPLORATION INTERACTION (E.G. QUERIES) ANNOTATION INTERACTIONS COMMAND HISTORY ACTION (E.G. UNDO/REDO)

(MANUAL) ANNOTATIONS



PROVENANCE OF INSIGHT

HISTORY OF COGNITIVE OUTCOMES FROM THE ANALYSIS


DIFFICULT TO CAPTURE, OFTEN MANUALLY ENTERED

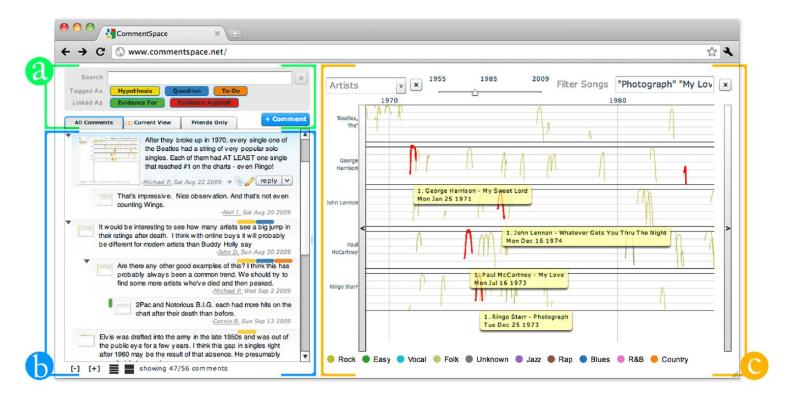
Network traffic visualization system Analyst can create logical models of visual discoveries


```
WebCrawl(x1,x2,...) =
  time_sequence_30s(x1,x2,...) AND
  more_than_32_events(x1,x2,...) AND
  identical_source_AS_number(x1,x2,...) AND
  ( is_web_access_event(x1) AND
     is_web_access_event(x2) AND ...)
```

Xiao et al. Enhancing Visual Analysis of Network Traffic Using a Knowledge Representation. VAST 2007.

Here: HTTP requests from Google

1) select interesting pattern (burst)


2) system selects a set of predicates (from a list) that are true for these points

Xiao et al. Enhancing Visual Analysis of Network Traffic Using a Knowledge Representation. VAST 2007.

destination_port_80, destination_Stanford, identical_source_asn, time_sequence_30s, time_sequence_60s, more_than_4_events, more_than_32_events

selected predicates

time_sequence_30s(x1,x2,...) AND more_than_32_events(x1,x2,...) AND identical_source_AS_number(x1,x2,...) AND (is_web_access_event(x1) AND is_web_access_event(x2) AND ...) analyst modifies list, adds conjunctions and looks at visual feedback to see if pattern is correctly identified

CommentSpace: Structured Support for Collaborative Visual Analysis Wesley Willett, Jeffrey Heer, Joseph Hellerstein, Maneesh Agrawala ACM Human Factors in Computing Systems (CHI), 2011

PROVENANCE OF RATIONALE

CAPTURE REASONING BEHIND DECISIONS, HYPOTHESES, INTERACTIONS

GOAL: IDEALLY FIGURE OUT SOMEONE'S ANALYTIC STRATEGY

PROVENANCE IN VISUAL ANALYTICS (RECAP)

PROVENANCE OF: DATA VISUALIZATION INTERACTIONS INSIGHTS RATIONALE

Characterizing Provenance in Visualization and Data Analysis: An Organizational Framework of Provenance Types and Purposes

Eric D. Ragan, Alex Endert, Jibonananda Sanyal, and Jian Chen

Abstract-While the primary goal of visual analytics research is to improve the quality of insights and findings, a substantial amount of research in provenance has focused on the history of changes and advances throughout the analysis process. The term, provenance, has been used in a variety of ways to describe different types of records and histories related to visualization. The existing body of provenance research has grown to a point where the consolidation of design knowledge requires cross-referencing a variety of projects and studies spanning multiple domain areas. We present an organizational framework of the different types of provenance information and purposes for why they are desired in the field of visual analytics. Our organization is intended to serve as a framework to help researchers specify types of provenance and coordinate design knowledge across projects. We also discuss the relationship between these factors and the methods used to capture provenance information. In addition, our organization can be used to guide the selection of evaluation methodology and the comparison of study outcomes in provenance research.

___ **+** __

Index Terms- Provenance, Analytic provenance, Visual analytics, Framework, Visualization, Conceptual model

1 INTRODUCTION

Data visualization and visual analytics combine the power of vi- business and financial analysis activities [37]. These are just a few sualization with advanced data analytics contonue to power or vi-sualization with advanced data analytics to help people to better understand data and discover meaningful insights. While the goal support provenance across a wide range of domains and for different of visualization research is ultimately to improve the quality of purposes. insights and findings, analytic processes are complicated activities [92, 52, 42].

to supporting provenance, which broadly includes consideration for and visualization, and then provides graphical representations of the tion and data analysis. workflow through a combination of node diagrams and intermediary visual outputs [5, 14]. Groth and Streefkerk [39] presented another example with a system for recording and annotating stages of view of the data sets that contributed to the creation of map visualizations.

- Eric D. Ragan is with Texas A&M University. E-mail: ragane@acm.org. · Alex Enders is with Georgia Tech. E-mail: enders@gatech.edu.
- Jibonananda Sanyal is with Oak Ridge National Laborators: E-mail: sanyalj@ornLgov
- Jian Chen is with University of Maryland, Bakimore County. E-mail: iichen@umbc.edu.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of publication xx Aug. 2015; date of current version 25 Oct. 2015. For information on obtaining reprints of this article, please send e-mail 10: 1vcg@computer.org.

As the body of research and existing tools has grown, the commiinvolving technology, people, and real work environments. Practical nity's knowledge of the many factors and goals relevant for effective applications encounter problems that extend beyond the integration provenance support has also broadened. However, the variety of of any system's analytic models, processing power, visualization perspectives can make it challenging to assess the specific aspects designs, and interaction techniques. Visualization systems must also support human processes, which often involve non-standardized The term, provenance that are targeted by any particular project. The term, provenance has been used in a variety of ways to describe methodologies including extended or interrupted periods of analysis, different types of origins and histories. For example, the scientific resource sharing and coordination, collaborative work, presentation to different levels of management, and attempts at reproducible analyses workflow (e.g., [34]), while other interpretations focus on the history For these reasons, a substantial amount of research in the areas of of insights and hypotheses (e.g., [70]). Although many researchers visualization, data science, and visual analytics has been dedicated proactively provide clear definitions and explanations of their foci in the provenance research, this does not entirely resolve the challenge the history of changes and advances throughout the analysis process (e.g., [34, 73, 37, 21]). It is clear that the research community agrees on the importance of supporting provenance, and many scholars become problematic for interpreting and coordinating outcomes from have developed tools and systems that explicitly aim to help ana- different provenance projects, for communicating ideas within the lysts record both computational workflows (e.g., [21, 5, 71]) and visualization community, and for allowing new-corners to clearly reasoning processes (e.g., [26, 37]). For example, VisiTrails tracks understand the research space. In our work, we analyzed the different steps of the computational workflow during scientific data analysis perspectives of provenance that are most relevant to areas of visualiza-

Our goal in this paper is to organize the different types of provenance information and purposes for why they are desired in information visualization, scientific visualization, and visual analytics manipulations during a 3D molecule-inspection task. As another example, Del Rio and da Silva [22] designed Probe-It to keep track and purposes. Further, we discuss the relationships between these Focusing on the provenance of insights, Gotz and Zhou described how the HARVEST system records the history of semantic actions during Our organizational framework is intended to help researchers specify types of provenance and coordinate design knowledge across projects In addition, our organization can be used to guide the selection of evaluation methodology and the comparison of study outcomes in provenance research.

2 EXISTING PERSPECTIVES OF PROVENANCE

Analytic provenance is a broad and complex concept within the areas of information visualization, data analysis, and data science. In visual data analysis, the concept often includes aspects of the cognitive and interactive processes of discovery and exploration, and also the computational sequences and states traversed to arrive at findings or insights. Prior surveys have presented definitions, categorizations

WHAT TO DO WITH PROVENANCE INFORMATION?

PROVENANCE PURPOSES

RECALL MEMORY OF STATES OF ANALYSIS

REPRODUCIBILITY REPRODUCE STEPS/WORKFLOW

ACTION RECOVERY UNDO/REDO, BRANCHING

PROVENANCE PURPOSES

COLLABORATIVE COMMUNICATION SHARE INFO WITH OTHERS

PRESENTATION COMMUNICATE INSIGHT/PROGRESSION

META-ANALYSIS REVIEW THE ANALYTIC PROCESS

PROVENANCE VS. REPRODUCIBILITY

PROVENANCE VS. REPRODUCIBILITY

GOAL OF GENERAL REPRODUCIBILITY: VALIDATE AN ANALYSIS

– BY SHARING DATA & CODE

HOW CAN WE VALIDATE A VISUAL ANALYSIS?

- BY SHARING INTERACTION LOGS? BY SHARING MANUAL ANALYSIS STEPS? ...
- HOW CAN THIS BE DONE IN A MORE GENERAL WAY ACROSS DIFFERENT GUI-BASED TOOLS?

CAPTURING PROVENANCE IS DIFFICULT

NO STANDARD

WHAT CAN WE PRACTICALLY DO?

WHY?

SOMETIMES YOU CAN'T SHARE CODE OR EVEN IF YOU CAN:

- MAKE YOUR ANALYSIS MORE
 UNDERSTANDABLE AND REPRODUCIBLE
 BY GENERATING A GOOD REPORT
- NOT EVERYONE KNOWS HOW TO READ
 CODE SO EXPLAIN YOUR ANALYSIS
 WELL

HOW TO MAKE A GOOD ANALYSIS REPORT

ADAPT TO YOUR AUDIENCE

- TL;DR PEOPLE ARE BUSY
- BREAK IT UP INTO DIFFERENT LEVELS OF GRANULARITY

LIKE RESEARCH PAPER

TITLE / AUTHOR LIST

ABSTRACT

BODY / RESULTS

SUPPLEMENTARY MATERIALS (DETAILS DETAILS DETAILS!)

CODE / DATA (EVEN MORE DETAILS)

SUBJECT LINE / SENDER INFO

– CAN YOU SUMMARIZE FINDINGS IN ONE SENTENCE?

– DEFINITELY ADD A SUBJECT LINE

EMAIL BODY

EMAIL

– BRIEF DESCRIPTION OF THE PROBLEM / CONTEXT

– IF ACTION NECESSARY MAKE CONCRETE OPTIONS

– IF NEEDED TRY TO MAKE QUESTIONS YES / NO

- SUMMARIZE FINDINGS / RESULTS (1-2 PARAGRAPHS)

EMAIL

ATTACHMENT:

- MORE DETAILED REPORT
- BUT STAY CONCISE

LINKS TO SUPPLEMENTARY MATERIAL

- CODE / SOFTWARE / DATA
- PROJECT WEBSITE, REPOSITORY (E.G. GITHUB)

RESOURCES

- SEE SCIENTIFIC REFERENCES ON SLIDES
- REPRODUCIBLE RESEARCH MOOC COURSERA.ORG (ROBER PENG)

AFTER THE BREAK TUTORIAL 4 – REPRODUCIBLE RESEARCH IN R

TOMORROW 10am START – SEMINAR TALK