INTRODUCTION TO STATISTICS

Slides by **Pierre Dragicevic**

WHAT YOU WILL LEARN

Statistical theory

Applied statistics

This lecture

GOALS

- Learn basic intuitions and terminology
- Perform basic statistical inference with R
- Focus on high-level aspects
- Accent on estimation rather than hypothesis testing ("the New Statistics")

ORGANIZATION

- Part I Elementary notions
- Part II Tutorial with R
- Part III Assignments

A DEFINITION

 Statistics is the study of the collection, analysis, interpretation, presentation and organization of data.

Dodge, Y. (2006) The Oxford Dictionary of Statistical Terms, OUP.

ORIGINS

- 1750s German Statistik "analysis of data about the state"
- Quickly adopted in England (previously called "*political arithmetics*")

ORIGINS

• John Graunt, 1662 *Observations on the bills of mortality*

THE TABLE OF CASUALTIES.

Se .

1619 1633 1647 1651 1655 1619 In 20 1630 1634 1648 1652 1656 1649

÷	*	У	10,000,000
6	4	ò	
-	25		I CIPC.

The Years of our Lord	1647	1648	1649	1650	1651	1632	165	31654	165	1656	1657	1658	1659	1660	16291	1630	1631	1632	163	1634	1635	1636	1633	1636	1650	1654	1657	1659	Years,
Abortive, and fulborn	335	329	327	351	380	381	3.84	433	483	419	463	407	421	\$44	499	439	410	445	500	475	507	\$23	1703	2005	124	1158-	1822		Seen
Aged	916	835	889	696	780	834	8 64	974	743	892	869	1176	900	1095	\$79	712	661	671	70-	623	794	714	2475	2814	2220	\$ 2452	2680	1247	15757
Ague, and Fevers	1260	884	751	970	1038	1212	1 282	1371	689	875	999	1800	2303	2148	9561	1091	1115	1108	951	1279	1622	2360	4418	6235	186	4001	4262	25/7	21784
Apoplex, and fodainly	68	74	64	74	105	111	118	86	91	102	113	138	91	67	22	36	1000	17	24	35	26	-	75	85	280	421	444	177	1100
Bleach	10125	1	1	3	2	2	140		- 1	1	1	1000	1		- 10			1							1	0	777	111	15
Blafted	4	1	1	1	6	6	19		4		5	5	3	S	13	8	10	13	9	4		4	\$4	14	4	12	14	16	00
Bleeding	3	2	5	I	- 3	4	3	2	7	3	5	4	.7	2	5	2	5	4	4	3			16	7	11	12	10	17	65
Bloudy Flux, Scouring, and Flux	155	176	802	289	833	761	100	386	168	368	362	233	346	251	449	438	352	348	278	512	346	330	1587	1466	1422	2181	1161	1:07	78:8
Burnt, and Scalded	3	6	10	5	11	8	5	7	10	5	7	4	6	6	3	10	7	5	1	3	12	3	25	19	24	31	26	10	125
Calenture	I	1	100	1	1	2	-1	1			3	Sec.	1.53	1	-		1	1		1.00	1	3		4	z	4	-		13
Cancer, Gangrene, and Fiftula	26	29	31	19	31	53	36	37	73	31	24	35	63	52	20	14	23	28	27	30	24	30	85	112	105	157	150	114	600
Wolf				.8					101									1.121				. 1		8	1				8
Canker, Sore-mouth, and Thrufh	66	28	54	42	68	51	3'3	72	- 44	81	19	27	73	68	0	- 4	4	I			5	74	15	79	190	244	161	122	680
Childbed	161	106	114	117	206	213	158	192	177	201	236	225	220	194	150	157	112	171	132	143	163	230	590	608	498	700	830	400	3364
Chrifomes, and Infants	1369	1254	1065	990	1237	1280	1050	1343	1 089.	1393	1101	1144	858	1153	2590	2378	2035	2258 2	130	2315	2113	1895	277	8453	4678	4910	4788	4510	32105
Colick, and Wind	103	71	85	82	76	102	\$ 1	101	85	120	113	179	110	107	48	57		122	122	6	37	50	105	87	341	359	497	147	1380
Cold, and Cough	1		1				41	36	21	58	30	31	33	24	10	58	51	55	45	54	50	\$7	174	207	00	77	140	43	598
Confumption, and Cough	2433	2200	2388	1988	2350	2410	2216	2868	2 606	3154	2757	3010	2982	3414	1827	1910	1713	1797	754	1955	2080	2477	5157	8260	8999	99141	2157	7107	44487
Convultion	684	491	\$30	493	569	653	60.6	818	702	1027	807	041	742	1031	52	87	19	2.1	221	300	418	700	498	1734	2198	2656	3377	1274	9073
Cramp	1.5		1	1								-	1.5	.0	1		1	0	0	0	0	0	01	co	01	0	0	1	2
Cut of the Stone	Sec.	2	1	3	maria	- 1	1	. 2	4		3	011	40	40				5	160	5	2		5	10	6	4	13	47	38
Droply, and Tympiny	185	434	421	508	444	559	617	704	660	700	031	731	640	872	235	252	279	200	200	250	329	385	1048	1734	1538	1321	2982	1302	9613
Drowned	47	40	130	27	49	50	13	30	43	249	05		\$7	40	43	33	29	34	37	32	32	45	139	147	+44	182	215	130	827
Excellive drinking		3 44	2		. St.	- and	1	1.0	1000			18		.0	1.4		1.0	.0	1.1			10	-		2	100	1		and a state of the
Executed	8	17	29	43	24	12	19	21	19			1	1	10	19	.,	1.4	10	13	13	15	13	62	32	97	76	79	55	384
Fainted in a Fath		1			I	1						1.0				10	-	-				e				1		5	1
Failing-Sickneis	3	2	2	3		3	4	I	4	822	824	400	4		3	40	-8	7	-		0	0	27	21	10	8	8	9	74
Flox, and Imali Pox	139	400	1100	184	5=5	1279	139	813	1294	045	023	11	15-3	334	72	22	30	531	13	· 334	293	127	701	1040	1913	2755	3361	2785	10570
Found dead in the Streets	0	0	9	7 8	7	9	14	4	3	22	25	\$2			10	22	12	0	2	0	- 11	14	03	00	37	34	27	29	243
French-Pox	18	29	15	18	21	10	10	20	29	~?	-3		3.	21	17			14	1	17			53	40	80	81	130	83	392
rngotea	4	4	I		3		2		I	-	8	11	14	2	0 4		.2	1	4		-	2		2	9	5	2	2	21
Godt	9	5	12	9	7	7	5	0	8	12	10	12	12	A	.0	10	22		14	17	1	0	44		35	25	36	281	134
Unged and and and a state	12	13	10	7	17	14	11	17	10	16	24	18	11	26	0	8	6	15	1.24	*/	3	-	71	20	48	59	45	47	279
runged, and made - away themlelves	11	10	13	14	9	14	2	9	14	2	1	5		26	° °			.,			-	1	3/		48	47	72	32	222
Taundice				2	1			0	2	41	46	77	102	76	47	50	35	43	35	15	54	63	184	1.97	190	14	17	40	0,1
Land falm.	3/	1 33	34	42	41	73	1 31	11		10000	3	1	1000		10	16	13	8	10	10	14	11	47	35	00	-14		108	992
Imonitume		. 61	60		1 3	1105		00	02	122	80	134	105	95	58	76	73	74	SC	62	73	130	:82	:15	260	1	222	10	. 25
Inh	10		0)	22	00	,	14	20		19.00	3 20	1.000	1	1000	1.00	19.42	1.1	2.10	10		1	200	00	10	01	234	740	220	1035
tilled by foveral & coldance	27	1			123	45		.8	52	43	52	47	55	47	54	55	47	46	40	41	53	60	202	201	21-	1 107	104	1.0	11
Sino's Fuil	22	26	39	24	47	20	36	26	27	24	23	28	28	54	16	25	18	38	35	20	26	69	97	150	0	04	102	145	1021
Letharou		-0	22	19	22	4	1	10	0	4	6	2	6	4	P	1000	2	2	1	-	2	2	5	7	1	24	2.	00	537
Leoroly	3	1		1	4		1 3		-	5		1		2	2			1	1		2		2	2				9	07
ivergrown Spleen and Distance		16	-6	60	1.	72	10	60	52	50	38	51	8	15	04	112	90	87	82	77	08	90	392	356	1 21	260	Ini		00
Constraint, opieca, and Rickets	33	10	20	. 29	05	11	1	03	6	7	13	5	14	14	6	II	6	5.		2	2		28	11		1 10	1	170	142

Cancer, Gangrene, and Filtula	20	29	31	19	31	53	16	37	73	31	
Wolf	66	28	5.	.0	60					81	
Canker, Sore-motion, and I many	1.61	106	114	110	00		100	72	97	201	B
Childhed	1.60	1254	1060	11/	200	128-	. 10	192	177	1202	1
Chrilomes, and inlants	1309	**34	1003	990	1237	+ 200	1030	1343	1089	1393	ŝ
Colick, and Wind	103	21	05	02	70	102	4.4	101	50	140	
Cold, and Cough	10000	1000	0.0	-	60.04	1000	- 1	30	21		
Confumption, and Cough	2433	2200	2388	1938	2350	2410	2210	2868	2 606	5104	1
Convultion	684	491	530	493	\$69	053	606	818	702	1017	£
Cramp	1 20	1 11	1		1			100	14 g/		Ľ
Cut of the Stone	RAS	2	1	3		- I	1	2	4		E
Dropfy, and Tympiny	185	434	421	508	444	559	617	704	660	700	1
Droswand	47	40	30	27	40	50	3	30	43	4%	E
Excellive drinking	110	1 23	2		1.	-03	1		10000	1000	2
Executed	8	17	20	43	24	13	19	21	19	22	ľ
Fainted in a Eath		1 1 1			1	1	12.5		10.6	1.5	Ľ
Falling-Sicknets	3	2	2	1		3	4	1	4	3	L
Flox, and fmall Pox	120	400	11:00	-184	616	1275	110	SIL	1204	823	R
Found dead in the Streets	6	. 6	0	- 8	3-3	0	14		1	4	
French-Pox	18	29	15	18	21	1 20	10	20	20	23	
Friehted		1				1 22	2			1	E
Gont	1 0	4	1.00		3			-		7	
Grief	2		1	9	7		2	0		13	
	12	13	10	1 7	17		10.35	17	10	1 16	

ORIGINS

John Graunt, 1662

Observations on the bills of mortality

- First "life tables"
- Dispelled several myths about the plague
- First analysis of sex ratio
- First realistic estimate of the population in London

ORIGINS

- Prompted collection of more data
- Parallel developments in probability theory
- Statistics then developed into a more rigorous discipline and was applied to:
 - Business & industry
 - Medicine
 - Science

STATS & VISUALIZATION

Statistical Charts – William Playfair 1759 – 1823

Exports and Imports to and from DENMARK & NORWAY from 1700 to 1780.

The Bottom line is divided into Years, the Right hand line into 1.10,000 each. Rediened as the Act dente, 18 May 1966 by W. Playfair

STATS & VISUALIZATION

Exploratory Data Analysis

 Tukey, 1977

John W. Tukey

EXPLORATORY DATA ANALYSIS

Box-and-whisker plots with end values identified

Figure 5.14 Generalized draftsman's display of the four-dimensional iris data (like Figure 5.11), with one flower plotted as an asterisk.

Statistical Graphics AT&T Bell Labs Video, 1985

sample ($\bar{\chi}$ = 57.25) is our best estimate of the population mean (μ_{χ})

STATS & VISUALIZATION

Confirmatory data analysis

- For answering questions rigorously
- Example: is this new drug effective?
- Strong focus on automatic procedures, computation and objectivity
- Looking at data can impair objectivity:
 - Cherry picking, snooping, fishing, data mining

STATS & VISUALIZATION

Exploratory data analysis is sometimes compared to detective work: it is the process of gathering evidence.

Confirmatory data analysis is comparable to a court trial: it is the process of evaluating evidence.

Exploratory analysis and confirmatory analysis *"can—and should—proceed side by side"* (Tukey; 1977).

Quoted from the SAS Institute

WHAT ARE STATS?

- A set of tools and methods
- With an old tradition:
 - Origins in demographics
 - Anchored in mathematics & probability theory
 - Visual representations play a role
 - A generally strong focus on (computationally cheap) numerical calculations

WHAT ARE STATS?

- Good for:
 - Summarizing data for presentation
 - Answering questions rigorously
 - Making predictions
 - Making rational, evidence-based decisions
 - A long accumulated experience!

STATISTICAL TOOLS

STATISTICAL TOOLS

DESCRIPTIVE STATISTICS

INFERENTIAL STATISTICS

STATISTICAL TOOLS

DESCRIPTIVE STATISTICS

AN EXAMPLE

Selling encyclopedias

day	Seller 1	Seller 2	Seller 3	Seller 4	Seller 5	Seller 6
1	€320	€80	€139	€330	€133	€387
2	€74	€60	€98	€44	€182	€29
3	€340	€67	€42	€100	€51	€91
4	€322	€54	€89	€44	€67	€886
5	€146	€195	€47	€173	€49	€227
6	€24	€288	€124	€111	€730	€79
7	€42	€249	€26	€77	€672	€45
8	€76	€67	€140	€382	€195	€171
9	€99	€312	€125	€123	€43	€98
10	€915	€77	€106	€250	€149	€70
11	€202	€504	€101	€205	€682	€134
12	€47	€167	€126	€48	€93	€63
13	€34	€65	€55	€56	€333	€1,157
14	€76	€46	€89	€104	€56	€470
15	€75	€34	€184	€35	€299	€205
16	€68	€37	€275	€170	€57	€192

day	Seller 1	Seller 2	Seller 3	Seller 4	Seller 5	Seller 6
1	€320	€80	€139	€330	€133	€387
2	€74	€60	€98	€44	€182	€29
3	€340	€67	€42	€100	€51	€91
4	€322	€54	€89	€44	€67	€886
5	€146	€195	€47	€173	€49	€227
6	€24	€288	€124	€111	€730	€79
7	€42	€249	€26	€77	€672	€45
8	€76	€67	€140	€382	€195	€171
9	€99	€312	€125	€123	€43	€98
10	€915	€77	€106	€250	€149	€70
11	€202	€504	€101	€205	€682	€134
12	€47	€167	€126	€48	€93	€63
13	€34	€65	€55	€56	€333	€1,157
14	€76	€46	€89	€104	€56	€470
15	€75	€34	€184	€35	€299	€205
16	€68	€37	€275	€170	€57	€192
17	€126	€23	€114	€30	€43	€60
18	€43	€290	€89	€446	€57	€226
19	€149	€215	€43	€63	€62	€72
20	€31	€81	€26	€469	€60	€39
21	€81	€127	€47	€68	€315	€566
22	€141	€70	€317	€40	€160	€42
23	€113	€947	€203	€102	€108	€76
24	€209	€48	€81	€102	€50	€56
25	€94	€95	€67	€21	€54	€41
26	€159	€125	€67	€263	€69	€173
27	€271	€176	€250	€35	€48	€24
28	€52	€85	€77	€136	€95	€82
29	€30	€12	€317	€157	€240	€58
30	€104	€31	€181	€113	€45	€27

CENTRAL TENDENCY

Name & Meaning	Formula / Example	Used for				
Arithmetic Mean [average]	$\frac{sum}{size} = \frac{a+b+c}{3}$	Most situations ("average item")				
Median [middle value]	Middle of sorted list (2 middles? Average 'em)	Wildly varying samples (houses, incomes)				
Mode [most popular]	Most popular value	No compromises (winner takes all)				
Geometric Mean [average factor]	³√abc	Investments, growth, area, volume				
Harmonic Mean [average rate]	$\frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$	Speed, production, cost				

When are the mean and the median equal? When do they differ?

negative skew

symmetric

positive skew

From Shreya Sethi

• • •

• •

From Shreya Sethi

What is the best measure of central tendency?

DISPERSION

Standard Deviation

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Image from Wikipedia

DEPENDENCE

Correlation

DEPENDENCE

Correlation

Image from Wikipedia

DEPENDENCE

Correlation

r = -0.08

Average Sales

 Seller 1	Seller 2	Seller 3	Seller 4	Seller 5	Seller 6
€149	€154	€122	€143	€173	€195

Average Sales

September 2014

How much can we trust this chart?

LET US TRAVEL TO THE FUTURE

September 2014

October 2014

November 2014

December 2014

September 2014

October 2014

November 2014

December 2014

BACK TO THE PRESENT

September 2014

day	Seller 1	Seller 2	Seller 3	Seller 4	Seller 5	Seller 6
1	€320	€80	€139	€330	€133	€387
2	€74	€60	€98	€44	€182	€29
3	€340	€67	€42	€100	€51	€91
4	€322	€54	€89	€44	€67	€886
5	€146	€195	€47	€173	€49	€227
6	€24	€288	€124	€111	€730	€79
7	€42	€249	€26	€77	€672	€45
8	€76	€67	€140	€382	€195	€171
9	€99	€312	€125	€123	€43	€98
10	€915	€77	€106	€250	€149	€70
11	€202	€504	€101	€205	€682	€134
12	€47	€167	€126	€48	€93	€63
13	€34	€65	€55	€56	€333	€1,157
14	€76	€46	€89	€104	€56	€470
15	€75	€34	€184	€35	€299	€205
16	€68	€37	€275	€170	€57	€192

September 2014

How much can we trust this chart?

STATISTICAL TOOLS

INFERENTIAL STATISTICS

Terminology:

Sample vs. population

- Mean, median, standard deviation, correlation, etc:
 - A sample statistic
 - A population parameter

Unit of statistical analysis

= "the thing that I'm sampling from a larger population"

Unit of statistical analysis

day	Seller 1	Seller 2	Seller 3	Seller 4	Seller 5	Seller 6
1	€320	€80	€139	€330	€133	€387
2	€74	€60	€98	€44	€182	€29
3	€340	€67	€42	€100	€51	€91
4	€322	€54	€89	€44	€67	€886
5	€146	€195	€47	€173	€49	€227
6	€24	€288	€124	€111	€730	€79
7	€42	€249	€26	€77	€672	€45
8	€76	€67	€140	€382	€195	€171
9	€99	€312	€125	€123	€43	€98
10	€915	€77	€106	€250	€149	€70
11	€202	€504	€101	€205	€682	€134

Unit of statistical analysis

day	Seller 1			
1	€320			
2	€74			
3	€340			
4	€322			
5	€146			
6	€24			
7	€42			
8	€76			
9	€99			
10	€915			

Unit of statistical analysis

day	Seller 1	Seller 2	Seller 3	Seller 4	Seller 5	Seller 6
1	€320	€80	€139	€330	€133	€387
2	€74	€60	€98	€44	€182	€29
3	€340	€67	€42	€100	€51	€91
4	€322	€54	€89	€44	€67	€886
5	€146	€195	€47	€173	€49	€227
6	€24	€288	€124	€111	€730	€79
7	€42	€249	€26	€77	€672	€45
8	€76	€67	€140	€382	€195	€171
9	€99	€312	€125	€123	€43	€98
10	€915	€77	€106	€250	€149	€70
11	€202	€504	€101	€205	€682	€134
STATISTICAL INFERENCE

Unit of statistical analysis

Average Sales

Seller 1	Seller 2	Seller 3	Seller 4	Seller 5	Seller 6
€149	€154	€122	€143	€173	€195

STATISTICAL INFERENCE

Unit of statistical analysis

day	Seller 1	Seller 2	Seller 3	Seller 4	Seller 5	Seller 6
1	€320	€80	€139	€330	€133	€387
2	€74	€60	€98	€44	€182	€29
3	€340	€67	€42	€100	€51	€91
4	€322	€54	€89	€44	€67	€886
5	€146	€195	€47	€173	€49	€227
6	€24	€288	€124	€111	€730	€79
7	€42	€249	€26	€77	€672	€45
8	€76	€67	€140	€382	€195	€171
9	€99	€312	€125	€123	€43	€98
10	€915	€77	€106	€250	€149	€70
11	€202	€504	€101	€205	€682	€134

"The sampling distribution of a statistic is the distribution of that statistic, considered as a random variable, when derived from a random sample of size n."

"It may be considered as the distribution of the statistic for all possible samples from the same population of a given size"

• **Demo** http://onlinestatbook.com/stat_sim/sampling_dist/

95% confidence interval

- Resampling techniques
 - Bootstrapping

Complete element space

Theorem (B. Efron, Ann. Statist. 1979)

When N tend to infinity, the distribution of average values computed from bootstrap samples is equal to the distribution of average values obtained from ALL samples with N elements which can be constructed from the complete space. Thus the width of the distribution gives an evaluation of the sample quality.

 Bootstrapping video

Confidence Intervals Using Bootstrapping

 How did people this do before computers?

Height in inches

Copyright © 2001 by Harcourt, Inc. All rights reserved.

Sir Francis Galton
1822 – 1911

Bean Machine or Galton Board:

Central Limit Theorem

Given certain conditions, the arithmetic mean of a sufficiently large number of iterates of independent random variables, each with a well-defined expected value and well-defined variance, will be approximately normally distributed

"Exact" Confidence Intervals

t ~ 1.96 for large samples

margin of error = length of blue line

95% confidence interval

Different random samples

tinyurl.com/danceptrial2

- Several interpretations
- « a range of plausible values for µ. Values outside the CI are relatively implausible. » (Cumming and Finch, 2005)
- Examples of presentation formats: 2.2m, 95% CI [1.6m, 2.8m]
 2.2m +/- 0.6m
 from 1.6m to 2.8m

« a range of plausible values for μ. Values outside the CI are relatively implausible. » (Cumming and Finch, 2005)

« a range of plausible values for μ. Values outside the CI are relatively implausible. » (Cumming and Finch, 2005)

CONFIDENCE INTERVALS

 « a range of plausible values for μ. Values outside the CI are relatively implausible. » (Cumming and Finch, 2005)

CONFIDENCE INTERVALS

"values close to our M are the best bet for μ, and values closer to the limits of our CI are successively less good bets."

(Cumming, 2013)

"the figure provides good evidence that B outperforms A, whereas C and A seem very similar, and results are largely inconclusive concerning the difference between D and A."

PUBLISHED EXAMPLE

CAST: Effective and Efficient User Interaction for Context-Aware Selection in 3D Particle Clouds

Lingyun Yu, Konstantinos Efstathiou, Petra Isenberg, and Tobias Isenberg, Senior Member, IEEE

Fig. 1. (a) SpaceCast selects particle clusters by enclosing them with a lasso, based on the lasso shape; (b) TraceCast does not require an accurate lasso; and (c) with PointCast users can select tiny clusters from a noisy environment with only a single click or touch.

Abstract—We present a family of three interactive Context-Aware Selection Techniques (CAST) for the analysis of large 3D particle datasets. For these datasets, spatial selection is an essential prerequisite to many other analysis tasks. Traditionally, such interactive target selection has been particularly challenging when the data subsets of interest were implicitly defined in the form of complicated structures of thousands of particles. Our new techniques SpaceCast, TraceCast, and PointCast improve usability and speed of spatial selection in point clouds through novel context-aware algorithms. They are able to infer a user's subtle selection intention from gestural input, can deal with complex situations such as partially occluded point clusters or multiple cluster layers, and can all be fine-tuned after the selection interaction has been completed. Together, they provide an effective and efficient tool set for the fast exploratory analysis of large datasets. In addition to presenting Cast, we report on a formal user study that compares our new techniques not only

PUBLISHED EXAMPLE

Fig. 6. Ratios between mean completion times for the Cast selection techniques. Error bars show 95% confidence intervals.

Thus, overall we have good evidence that both Point-Cast and TraceCast outperform SpaceCast, and some indication that PointCast may outperform TraceCast. At any rate, the differences among Cast methods are marginal compared to the differences between each Cast method and CloudLasso or CylinderSelection.

BACK TO OUR EXAMPLE

Selling encyclopedias

Average Sales

Seller 1	Seller 2	Seller 3	Seller 4	Seller 5	Seller 6
€149	€154	€122	€143	€173	€195

Fair Statistical Communication in HCI

Pierre Dragicevic

Preprint v.1.6.3, to appear in February 2016. How to cite:

Sincollection(dregiseric2016Fair, wother = (Fierre Bragicevic), title = (Fair Statistical Communication in (NCI)), editor = (J. Robertson and N.C. Kaptein), booktitle = (Nodern Statistical Methods for (NCI)), publisher = (Springer), year = (2016), note = (In press))

Abstract Statistics are tools to help end users accomplish their task. In research, to be qualified as usable, statistical tools should help researchers advance scientific knowledge by supporting and promoting the effective communication of research findings. Yet areas such as human-computer interaction (HCI) have adopted tools i.e., *p*-values and dichotomous testing procedures—that have proven to be poor at supporting these tasks. The abusive use of these procedures has been severely criticized in a range of disciplines for several decades, suggesting that tools should be blamed, not end users. This chapter explains in a non-technical manner why it would be beneficial for HCI to switch to an *estimation* approach, i.e., reporting informative charts with effect sizes and interval estimates, and offering nuanced interpretations of our results. Advice is offered on how to communicate our empirical results in a clear, accurate, and transparent way without using any tests or *p*-values.

1 Introduction

A common analogy for statistics is the toolbox. As it turns out, researchers in human-computer interaction (HCI) study computer tools. A fairly uncontroversial position among them is that tools should be targeted at end users, and that we should

Understanding The New Statistics Effect Sizes, Confidence Intervals, and Meta-Analysis

Geoff Cumming

HOME PEOPLE PROJECTS PUBLICATIONS JOBS TEACHING CONTACT

View Edit Prir

Bad Stats: Not What It Seems

Towards a Statistical Reform in HCI and Visualization

Pierre Dragicevic and colleagues

This page provides arguments and reading material to explain why it would be beneficial for humancomputer interaction (HCI) and information visualization (infovis) to stop doing mindless null hypothesis significance testing (NHST) and start reporting informative charts with effect sizes and interval estimates, as well as offering more nuanced interpretations of our results. Our scientific standards can also be greatly improved by planning analyses and sharing experimental material online.

Content:

Fair Statistical Communication in HCI (book chapter) Bad Stats are Miscommunicated Stats (BELIV 2014 Keynote) Running an HCI Experiment in Multiple Parallel Universes (Alt.CHI 2014 Paper) Quotes about null hypothesis significance testing (NHST) Links Reading List More Readings Papers (somehow) in favor of NHST Papers against confidence intervals Papers from the HCI Community

0.0. 11.1 1.1.1

http://tinyurl.com/stats-dresden

