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Abstract
We review a range of temporal data visualization techniques through a new lens, by describing them as series of op-
erations performed on a conceptual space-time cube. These operations include extracting subparts of a space-time
cube, flattening it across space or time, or transforming the cube’s geometry or content. We introduce a taxonomy
of elementary space-time cube operations, and explain how they can be combined to turn a three-dimensional
space-time cube into an easily-readable two-dimensional visualization. Our model captures most visualizations
showing two or more data dimensions in addition to time, such as geotemporal visualizations, dynamic networks,
time-evolving scatterplots, or videos. We finally review interactive systems that support a range of operations. By
introducing this conceptual framework we hope to facilitate the description, criticism and comparison of existing
temporal data visualizations, as well as encourage the exploration of new techniques and systems.

Categories and Subject Descriptors (according to ACM CCS): H.5.0 [Information Systems]: Information Interfaces
and Presentation—General

1. Introduction

Temporal datasets are ubiquitous but notoriously hard to vi-
sualize, especially rich datasets that involve more than one
dimension in addition to time.

Previous work on novel visualizations for temporal data
has dramatically advanced the field of information visual-
ization (infovis). However, there are so many different tech-
niques today that it has become hard for both researchers
and designers to get a clear picture of what has been done,
and how much of the design space of temporal data visual-
izations remains to be explored. For similar reasons, teach-
ing this research topic to students is challenging. Therefore,
there is a clear need to structure and organize previous work
in the area of temporal data visualization.

Part of the problem is that information visualization re-
searchers have mostly focused on nomenclature. Most fa-
miliar charts have an agreed-upon name, e.g., bar charts or
scatter plots, and this tradition has been continued in info-
vis, where each newly published visualization technique is
given a different name. Many textbooks and surveys list ex-

isting techniques by their name, both for general visualiza-
tions [Har99] and for temporal visualizations [AMST11].

Although names are essential for indexing, retrieval and
communication purposes, they are a poor thinking tool. Be-
cause there is no convention for naming techniques, names
rarely reflect the essential concepts behind a technique. For
example, names such as Value Flow Maps [AA04b] and
Planning Polygons [SRdJ05] say little about the possible
conceptual similarities between the two techniques (see Fig-
ure 1). Names can also be ambiguous. For example, the term
small multiples is commonly used to refer to a specific type
of temporal data visualization [Tuf86]. But Figure 2 shows
that two visualizations can be based on small multiples de-
spite being very different conceptually.

There has been recent effort at proposing taxonomies,
conceptual models and design spaces for temporal visual-
izations, mainly focusing on analytical tasks and data types
(e.g., object movement data [AAH11, AAB∗11, AA12],
video data [BCD∗12], or datasets with different temporal
and spatial structures [AMM∗07]).
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(a) Value flow diagram [AA04b]

(b) Planning Polygons [SRdJ05]

Figure 1: Two conceptually similar temporal visualization
techniques showing: (a) the evolution of crime statistics in
every US state; (b) the evolution of high school population
in several districts across 3 years.
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Figure 2: Two visualizations using small multiples to show
the same indicator data for 4 countries over 6 years, but
which are conceptually very different.

We propose a simple way of describing temporal vi-
sualizations based on operations on conceptual space-time
cubes. Our work is specific in that it focuses on how to char-
acterize existing techniques, independently from the data
and the tasks, and without considering which technique is
the most effective. Hence our framework is unique in that it
is purely descriptive.

The merit of a clear and detailed descriptive framework
is that it helps i) connect techniques that are similar and ii)
distinguish techniques that are dissimilar. For example, the
two techniques from Figure 1 are the result of a similar op-
eration on a space-time cube and which we call sampling.
Figure 2(a) involves operations such as filtering, time flat-
tening and space shifting, while Figure 2(b) is the result of a
compound operation we call time juxtaposing.

Figure 3: A space-time cube based on an illustration by
Hägerstrand [Hä70] in 1970, showing social interactions
across space and time.

The term space-time cube originates from cartography,
where it refers to a geographical representation where time
is treated as a third dimension [AA03]. One of the earli-
est uses was by geographer Hägerstand in 1970, who de-
scribed a "space-time model which could help us to develop
a kind of socio economic web model" [Hä70, p. 10]. His in-
tention was to analyze people’s behaviour and interactions
across space and time. For example, a moving person on a
2D map becomes a static 3D trajectory once visualized as
a space-time cube (Figure 3). Since then, space-time cubes
have been employed in a number of interactive visualization
systems (e.g., [CCT∗99, FLM00, Kra03]), as well as for en-
tertainment purposes [CI05] (see Figure 4). However, they
have never been used as a conceptual model for reflecting
on temporal visualization techniques.

Figure 4: Khronos projector [CI05] lets users dig into video
cubes: here, a scene transitioning from day to night.

In this article we use the term space-time cube in a similar
fashion as in previous work, but with two major differences:

1. A space-time cube is a conceptual representation that
helps to think about temporal data visualization techniques
in general, not only 3D visualizations. The space-time cube
does not necessarily have to appear explicitly in the final vi-
sualization nor does it need to be implemented in the system
used to generate this visualization. For example, the visual-
izations in Figure 1 do not show a space-time cube. For most
observers, they are purely 2D visualizations.
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2. A space-time cube does not need to involve spa-
tial data. Many visualizations (e.g., scatterplots, bar charts
or node-link diagrams) convey abstract, non-spatial data
[Mun08]. Nevertheless, they all occupy a 2D space. When
data changes over time, such as in GapMinder’s animated
2D scatterplots [Ros06], each animation frame can be con-
ceptually thought of as a slice of a space-time cube. In the
term space-time cube, space therefore refers to an abstract
2D substrate that is used to visualize data at a specific time.

Thus it is important to stress that this article is not about
space-time cube visualizations, and that 3D space-time cube
representations like the one in Figure 3 only represent a very
small subset of the techniques we aim to cover.

In addition, our conceptual framework does not consider
how space-time cubes are built, e.g., whether or not 2D scat-
terplots should be used to represent the value of country in-
dicators at any given time. Instead, it assumes that a con-
ceptual 3D space-time cube is already given, and focuses
on how this cube can be transformed to accommodate 2D
media like computer displays and paper while remaining
legible. We show how such transformations are enough to
capture most known techniques for visualizing rich tempo-
ral datasets. We mostly focus on datasets that involve two
dimensions plus time (e.g., spatio-temporal data, dynamic
graphs, scatterplots, videos, or any two-dimensional numer-
ical data varying over time), although we later discuss how
our model can be extended to other dimensionalities.

We first review common temporal data visualization tech-
niques, and explain how they can be all seen as operations on
a conceptual space-time cube. We then describe our frame-
work in more detail by providing definitions of key concepts,
as well as a taxonomy of elementary operations and how
they can be combined. We then review temporal data explo-
ration systems that show how a range of space-time cube op-
erations can be supported on a single system through inter-
activity. Finally, we discuss the limitations of our framework
and suggest avenues for future work.

2. Static Visualizations as Space-Time Cube Operations

In this section we illustrate how space-time cube operations
can be used to describe a range of common static visual-
ization techniques for temporal data, all meant for screen
or paper media. We focus on a small but representative se-
lection of examples from the literature, and describe oper-
ations informally, often using analogies from photography
techniques and art.

The conceptual space-time cube we use to describe all
techniques has three major axes: a time axis, and two or-
thogonal axes we call data axes. The 2D plane formed by
the two data axes is referred to as the data plane. While in
Haegerstrand’s original illustration the time axis is vertical,
in our illustrations time goes from left to right.

2.1. Time Cutting

Time

1 2

Figure 5: The time cutting operation.

A time cutting operation consists in extracting a particu-
lar temporal snapshot from the cube to be presented to the
viewer. Figure 5 illustrates this operation: the left part (1)
shows the initial space-time cube and the temporal snapshot
that is being extracted, while the right part (2) shows the re-
sulting image that is presented to the viewer.

For example, consider a photographer who captures a par-
ticular instant of a moving scene. If the scene being viewed
is represented as a space-time cube (i.e., all possible pictures
are piled up to form a cube), then taking a photograph is
equivalent to applying a time cutting operation on this cube.

In information visualization, an image produced by time
cutting is typically called a time slice. But a temporal visual-
ization rarely consists in a single time slice. As we will see
in Section 3, time cutting is typically either performed mul-
tiple times and used in combination with other operations, or
is used in combination with animation and interaction.

2.2. Time Flattening

Time

1 2

Figure 6: The time flattening operation.

Time flattening collapses the space-time cube along its
time axis, by merging all time slices into a single 2D im-
age (Figure 6). An analogy is long exposure photography,
which collapses several seconds, minutes or even hours of a
natural scene into a single image.

One of the earliest uses of time flattening is Minard’s
illustration of Napoleon’s march towards Moscow (Figure
7). The illustration shows on a single image the state of
Napoleon’s army (position, size, key events) at different
points in time during the Russian campaign in 1812 [Tuf86].
Another early example is Dr. John Snow’s map showing
where deaths from cholera occurred in London in 1854 (Fig-
ure 8(a)). The map shows events from several days aggre-
gated over time.
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Figure 7: A famous example of time flattening: Napoleon’s
march to Moscow by Joseph Minard [Tuf86].
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Figure 8: Other examples of time flattening: (a) Detail of the
map of the cholera outbreak in London 1854, by Dr. John
Snow. Piled bars mark the number of death per house. (b)
Connected scatterplot showing the relationship between in-
flation rate and unemployment in Spain from 1990 to 2000.

Many maps that show temporal data can be seen as time-
flattened space-time cubes. But the time flattening technique
is not limited to geographical data, and has been employed in
a large variety of information visualization systems as well
as in static data graphics. Figure 8(b) for example, shows the
evolution of inflation rate and unemployment in Spain from
1990 to 2000. This diagram can be seen as time-flattened
version of a space-time cube representing a 2D scatter plot
with a single data point evolving over time.

2.3. Discrete Time Flattening

Time

21 3

Figure 9: The discrete time flattening operation.

Discrete time flattening is similar to time flattening, but
instead of merging all time slices into an image, a selection
of time slices is made before combining them (Figure 9).

An analogy for discrete time flatting is multiple expo-
sure photography, where several photos are taken at different
times and blended into a single image. Etienne-Jules Marey
pioneered this technique in 1882 with an instrument (the
chronophotographic gun) that records 12 photos per second
on the same film, and used it to visualize human and ani-
mal motion [Mar78]. Modern art has also employed a simi-
lar technique to convey movement, e.g., Marcel Duchamp’s
“Nude Descending a Staircase, No. 2”.

Figure 10: An example of discrete time flattening. For a bet-
ter infographic by Megan Jaegerman, see [Tuf].

Tufte [Tuf86] comments on several examples of info-
graphics that employ discrete time flattening. He calls them
sequences. One of his famous examples is the life cycle of
the Japanese beetle [Tuf86]. Figure 10 is a sequence show-
ing a dancer’s move. Discrete time flattening has also been
used for summarizing videos [BDH04].

2.4. Colored Time Flattening

Time Time

21 3

Figure 11: The colored time flattening operation.

The colored time flattening operation is similar to the
time flattening operation, but time slices are assigned a color
before being combined (Figure 11). Although this opera-
tion does not map to any photography technique we know
of, similar results could in principle be obtained by rapidly
switching color filters during a long-exposure photography.

Two examples of visualizations obtained by colored time
flattening are shown in Figure 12: (a) a dynamic graph where
old links (in red) are distinguished from new links (in blue)
[CKN∗03]; (b) Chinese characters where first strokes (in
black) are distinguished from later strokes (in red) [Wik13].
Minard’s map (Figure 7) also makes use of a simplified form
of colored time flattening, since the army’s forward march
and return are distinguished using two different colors.
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(a) (b)

Figure 12: Two visualizations using colored time flattening.
(a) Illustration of a dynamic graph visualization as used in
GEVOL [CKN∗03]. (b) Stroke order in Chinese characters
[Wik13]; the color legends have been added.

Time

Time21 3

Figure 13: The time juxtaposing operation.

2.5. Time Juxtaposing

Time juxtaposing consists in extracting multiple time slices
then placing them side-by-side or on a grid (Figure 13).

An analogy is Eadweard Muybridge’s multiple camera
chronophotography [Muy87]. In contrast with Marey, Muy-
bridge used multiple cameras that recorded snapshots on dif-
ferent locations on the film. He used it for the scientific study
of for example horse gaits, and his pictures famously settled
the question as to whether horses have all four feet off the
ground while trotting. Time juxtaposing is also the base for
many forms of sequential art, from ancient Egyptian murals
and Greek vase paintings to today’s comics [McC94].

Time juxtaposing is often used in information visualiza-
tion to show temporal data such as time-evolving maps, tra-
jectories in space [TBC13] and dynamic graphs [LNS11,
BBL12, RM13, BPF14a]. Figure 2.5 shows forest harvest
data over 11 years. In information visualization time jux-
taposing is usually referred to as small multiples [CKN∗03],
although small multiples are not necessarily built from time
slices (see Figure 2(a)). Time juxtaposing has been also
widely used for video summarization [TV07].

2.6. Space Cutting

Space cutting consists in extracting a planar cut in a direc-
tion perpendicular to the data plane (Figure 15). An anal-
ogy is slit-scan photography, a process where a plate into
which a slit has been cut is inserted in front of a camera and

Figure 14: Time juxtaposing showing approved forest har-
vest applications across 10 years [Gre11].

1 2

Time

Figure 15: The space cutting operation.

then moved while the film is being exposed [TGF08]. Slit-
scan photography has been used to create special effects in
movies, artwork and photo finishes in sports.

Figure 16: Example of space cutting: horizontal lines indi-
cate train stops, vertical lines indicate times, and diagonal
lines indicate moving trains [Mar78].

Space cutting has also been employed for visualizing tem-
poral data. In the 19th century, Marey created a visualiza-
tion using space cutting to visualize train connections be-
tween major French cities (Figure 16). Space is cut along the
rails connecting cities and diagonal lines indicate positions
of trains at any time [Tuf86, Mar78].
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Figure 17: Space cutting used to show road traffic [TGF08].

More recently, space cutting was shown to be useful for
analyzing video logs [TGF08]: Figure 17 shows a space cut
(called tear in the original work) extracted from a video
scene, and revealing traffic activity (car count, speed and di-
rection) on a road. The time slice at t1 is shown to the left,
together with the position of the segment extracted. The sys-
tem is also able to show multiple longitudinal slices on top
of each other (i.e. space juxtaposing).

2.7. Space Flattening

21

Time

Figure 18: The space flattening operation.

Space flattening is similar to space cutting, but involves
flattening the cube along a particular direction on the data
plane instead of extracting a cut (see Figure 18).

An example of use of space flattening in infovis is the
History Flow technique for visualizing document histo-
ries [VWD04], illustrated in Figure 19: the right panel shows
the last revision of a Wikipedia article, each color corre-
sponding to a specific contributor. The left visualization
shows the history of the article, built by collapsing each ar-
ticle revision into a one-pixel column, and then displaying
all columns side-by-side. These operations are equivalent to
flattening the article’s space-time cube along the x data axis.

Figure 19: An example of space flattening showing the edit
history of a Wikipedia article [VWD04].

Figure 20: An example of space flattening for showing arti-
cle citations over time [SA06, AS].

Space flattening has also been used for visualizing dy-
namic networks [FBS06,SA06,BVB∗11]. For example, Fig-
ure 20 shows a screenshot from Semantic Substrates [SA06]
where the y-axis is a 1D graph layout, and the x-axis shows
when connections are established.

2.8. Sampling

Time

21 3

Figure 21: The sampling operation.

Sampling is a more complex operation that consists in ex-
tracting space cuts (samples) from a space time cube at sev-
eral locations on the data plane, then rotating those samples
in-place so they face the viewer (Figure 21).

Two examples of sampling are mentioned in this article’s
introduction (Figure 1). The top one shows the evolution of
crime statistics in every US state [AA04b], while the bot-
tom one shows the evolution of high school population in
several districts across three years [SRdJ05]. Although addi-
tional operations are involved (e.g., using silhouette graphs
to encode values), both examples are conceptually based on
a sampling operation. Sampling has also been used in dy-
namic network visualization, for conveying changes in edge
weight [BN11] and in attribute values [HSCW13].

2.9. 3D Rendering

Time

Figure 22: The 3D rendering operation.

3D rendering consists in showing a space-time cube the
way three-dimensional objects are typically displayed on 2D
media, i.e. by projecting it onto a 2D plane (Figure 22).
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3D rendering is essentially a flattening operation but in
contrast with time flattening and space flattening, it is (i)
typically done on a plane not orthogonal to the cube’s princi-
pal axes; (ii) can involve a non-orthographic projection (e.g.,
perspective projection); (iii) can involve 3D shading, i.e. the
addition of light reflections and shadows.

(a) (b)

Figure 23: Two examples of 3D rendering. (a) Occurrence of
earthquakes (authors’ illustration after [GAA04]), and (b) a
dynamic Network [DG04]

In geography and geology, 3D rendering has been used
to visualize events such as earthquakes (Figure 23(a)) or the
movement of objects [Kra03, GAA04]. 3D rendering is also
common in temporal information visualization. For exam-
ple, in networks whose connectivity change over time, nodes
can be represented as columns and links as bridges [DG04,
BC03] (Figure 23(b)). When the layout of the dynamic net-
work also changes, nodes become worms [DE02, GHW09].

3. The Design Space of Space-Time Cube Operations

The previous section reviewed several common operations
that turn a conceptual time-space cube into a final two-
dimensional visualization. Those were examples selected for
illustration, and the list was not meant to be exhaustive. In
addition, some operations were rather simple (e.g., time cut-
ting), while others were more complex (e.g., sampling) and
could be described as a composition of several lower-level
operations. Therefore, we provide in this section a more sys-
tematic description of the design space of space-time cube
operations.

3.1. Basic Terminology

A space-time cube operation takes a space-time object and
produces another space-time object. A space-time object is
a geometrical object within a space-time coordinate system
(i.e. two spatial dimensions and one temporal dimension).
Possible space-time objects include (i) space-time volumes
(of which a complete space-time cube is an example), (ii)
space-time surfaces (planar and non-planar), (iii) space-time
curves, (iv) points, as well as (v) sets of disconnected vol-
umes, surfaces, curves and points.

The ultimate goal of space-time cube operations is to
transform a space-time cube into a space-time object whose
shape is compatible with the shape of the media employed
to convey the information. By media we mean the visual-
ization’s physical presentation, which is the physical object
or apparatus that makes a visualization observable to the
viewer [JD13]. In the vast majority of cases (i.e. computer
displays and paper) the media has a planar shape.

For a given media, a space-time cube operation is com-
plete if it takes space-time volumes as input and produces
space-time objects whose shape match the media’s shape.
Otherwise the operation is incomplete: it cannot be used to
produce a valid visualization from a space-time cube. Sev-
eral elementary space-time cube operations can be chained,
in which case they form compound operations. A compound
operation is complete if the first operation takes space-time
volumes as input, and the last operation produces space-time
objects whose shape is compatible with the media.

3.2. A Taxonomy of Elementary Space-time cube
operations

A taxonomy of elementary space-time cube operations is
shown in Figure 24 on the next page. The taxonomy breaks
down space-time cube operations into five main classes:

• Extraction consists in selecting a subset of a space-time
object (e.g., extracting a line or cut from a volume),

• Flattening consists in aggregating a space-time object into
a lower-dimensional space-time object (e.g., projecting a
volume onto a surface),

• Filling consists in turning a set of disconnected space-
time objects into a fully connected space-time object,

• Geometry transformation consists in transforming a
space-time object spatially without change of content,

• Content transformation consists in changing the content
of a space-time object without affecting its geometry.

The table in Figure 24 shows how general operations
break down into more specific operations. On each of the
two columns, general operations are on the left while more
specific operations are on the right. Operations that are the
most specialized (i.e. leaves on the taxonomy tree) are shown
on a white background. Operations written in bold are those
which produce planar surfaces, i.e. can be used as final op-
erations on screen-based and paper-based media.

We quickly review the most specialized operations (white
background), going from top to bottom on the left column,
then on the right column. We also describe the parameters
necessary to specify each space-time cube operation. Most
of the operations have already been used in infovis, others
have been added for completeness.

• Extraction:

– Point extraction consists in selecting a specific point
inside a space-time volume. This operation is defined
by a 2D position on the data plane and a time value.
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– Time drilling consists in extracting a line parallel with
the time axis. It is uniquely specified by a 2D position
on the data plane. For example, sampling (Section 2.8)
uses several drilling operations.

– Space drilling extracts a line perpendicular with the
time axis. It is specified by a 2D line and a time value.

– Oblique drilling consists in extracting an arbitrarily
oriented straight line from within a space-time volume.

– Planar curvilinear drilling consists in extracting a
planar 3D curve from a space-time volume. This op-
eration, as well as all operations above, is complete
for 2D media.

– Non-planar curvilinear drilling consists in extract-
ing an arbitrary 3D curve from a space-time volume.
It is incomplete, and hence needs to be combined
with other operations like flattening or unfolding. This
operation can be used to extract object trajectories
[KW04, RFF∗08].

– Time cutting consists in extracting a planar cut from
a space-time volume in a direction orthogonal to the
time axis (see Section 2.1). It takes as parameter a time
value that defines the cut position on the time axis. It
is a complete operation for 2D media.

– Linear space cutting consists in extracting a planar
cut from a space-time volume in a direction orthogonal
to the data plane (see Section 2.6). It is also complete,
and takes as parameter a line or a segment parallel to
the data plane that once extruded over time defines the
cutting surface.

– Oblique cutting consists in extracting a planar cut
from a space-time volume that is neither orthogonal
to the time axis, nor orthogonal to the data plane (e.g.
[FLM00]). It takes as parameter a 3D cutting plane.

– Curvilinear space cutting is similar to linear space
cutting except the cutting surface is produced by ex-
truding a curve parallel to the data plane that is nei-
ther a line nor a segment. This operation produces
non-planar space-time surfaces that further need to be
flattened (e.g., using 3D rendering [TSAA12]) or un-
folded (as in Figure 16).

– Time chopping is similar to time cutting but slices
have a thickness instead of being infinitely thin. Since
it produces volumes it is not complete for 2D media,
and thus needs to be complemented with additional op-
erations. It takes as parameter a time segment that de-
fines the two cutting slabs (a slab is the infinite region
between two planes).

– Linear space chopping, oblique chopping and
curvilinear space chopping are similar to the previ-
ous cutting operations, with the difference that they
produce volumes with a certain thickness instead of
infinitely thin surfaces.

• Flattening:

– Time flattening aggregates a space-time volume into
a plane orthogonal to the time axis (see Section 2.2).

This operation takes as parameters a time value, a
projection function and an aggregation function. The
projection function maps 3D points to points on the
plane. Examples include orthographic projection and
perspective projection. The aggregation function de-
scribes how point values are combined. If values are
defined in an RGBA color space, the function maps
vectors of RGBA colors to a single RGBA color. Ex-
amples of such functions include alpha-blending (e.g.,
averaging all colors) and overplotting (i.e. only keep-
ing the last color).

– Space flattening, oblique flattening and non-planar
flattening are similar operations, but the surface on
which the volume is projected is different (see previ-
ous cutting operations as well as Sections 2.7 and 2.9
for more details).

• Filling:

– Time interpolation consists in filling “holes” in
space-time objects (volumes, surfaces or curves) by
interpolating between values along the time axis. It
takes as parameter a monovariate interpolation func-
tion. For example, a piecewise linear time interpola-
tion operation will transform a set of time slices into a
full space-time cube by linearly interpolating the val-
ues (e.g., RGBA colors) between pairs of successive
time slices.

– Space interpolation consists in filling “holes” in
space-time objects by interpolating between values on
each data plane. It takes as parameter a bivariate inter-
polation function. For example, a bilinear space inter-
polation operation will transform a set of lines parallel
to the time axis into a full space-time cube.

– Volume interpolation consists in filling “holes” in
space-time objects by interpolating across both space
and time. It takes as parameter a trivariate interpolation
function. One example is interpolating video frames
using motion estimation techniques [CLK00].

• Geometry Transformation:

– Space shifting, time shifting, yaw, roll and pitch
consist in moving or rotating space-time objects. They
can be used, e.g., for placing multiple cuts side-by-side
or for rotating an entire space time cube rendered in
3D (e.g. [KW04,CCT∗99,BPF14b]). They each take a
single scalar value as parameter.

– Time scaling and space scaling rescale space-time
objects along their principal axes. They take as param-
eters one and two scalar values respectively, that define
the scaling factor.

– Bending deforms space-time objects. For example, a
space-time volume can be bent such that the time axis
follows an arc instead of a line [DC03]. This operation
takes as parameter a deformation function that maps
3D locations to 3D locations.

– Unfolding transforms a non-planar space-time surface
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into a planar space-time surface. An analogy is a map
projection function that transforms a sphere or portion
of sphere into a plane. An example of space-time un-
folding is Maray’s train schedule (Figure 16), which
can be seen as an unfolded curvilinear space cut per-
formed on a time-evolving 2D map.

• Content Transformation:

– Time coloring consists in altering the colors of each
time slice according to time. Examples include col-
oring each time slice uniformly according to a linear
color scale (Figure 12), changing the hue of each time
slice, or dividing the time axis in different regions and
applying a discrete color scale (Figure 7).

– Space coloring alters the color of points in a space-
time volume depending on their 2D position on the
data plane.

– Difference coloring consists in altering the colors
of each time slice according to the difference be-
tween time slices. One example is highlighting ap-
pearing nodes and disappearing nodes in a dynamic
graph [RM13, BPF14a].

– Time labeling consists in adding time labels to each
time slice or to objects inside a space-time volume
(Figure 8(b)).

– Stabilizing consists in repositioning objects on each
data plane so that their trajectories are as parallel as
possible to the time axis. Examples include comput-
ing stable layouts for dynamic networks [AP12a] and
stabilizing videos [BGPS07].

– Bundling consists in repositioning objects on each
data plane in order to bring their trajectories closer to
each other. One example is bundling air plane routes
[HEF∗13].

– Shading consists in altering the color of a space-
time volume’s content by simulating light propagation
mechanisms (e.g., diffusion, specular reflection, drop
shadows).

– Filtering consists in removing parts of a space-time
volume’s content. One example is removing all points
of a certain color or value [CCT∗99, DC03, BPF14b].

– Aggregation replaces multiple space-time objects by
a single, larger space-time object. Different methods
exist. For example, 3D kernel density estimation trans-
forms a set of space-time points or space-time curves
into 3D volumes or 2D (iso) surfaces [DV10].

3.3. Adaptive and Semantic Operations

So far we mostly described operations that are agnostic to the
data and the content of the cube. Adaptive operations take
into account the shape or content of the particular space-time
objects they operate on. For example, an adaptive time cut-
ting operation can be used to cut cubes according to regions
with large changes instead of cutting them into regularly-
spaced slices. This technique is used, for example, in adap-

tive video fast-forward [PJH05]. Similarly, an unfolding op-
eration that works on any surface (as opposed to, e.g., only
spheres), would be an adaptive unfolding operation.

Semantic operations take into account the data seman-
tics of the space-time objects they operate on. One exam-
ple would be a semantic volume interpolation operation that
connects discrete sets of moving objects with lines or tubes
(see Figures 8(b) and 23(b), as well as [Ros06, BPF14a]).
This type of operation is semantic because it needs to know
the identity of the objects to be able to match them on suc-
cessive time slices. Time labeling operations such as the one
used in Figure 8(b) are also semantic, because they need to
know the location of datapoints of interest to place the labels
appropriately. Filtering operations can also be semantic, as
well as recoloring operations [VWD04, RFF∗08, BPF14b].
Finally, semantic operations can also be used to cut cubes
according to specific temporal cycles (days, weeks, etc.).

3.4. Compound Operations

We previously defined compound operations as several oper-
ations applied in sequence. According to our taxonomy from
Figure 24, some of the operations we introduced in Section
2 are elementary, namely time cutting, time flattening, space
flattening. Others are compound and can be broken down as
indicated in Table 1. In our notation, the symbol + refers to a
composition, the symbol ∗ refers to operations applied mul-
tiple times and the symbols [ ] refer to optional operations.

Compound Operation Elementary Operations
Discrete time flattening time cutting* + time flattening
Colored time flattening time coloring + time flattening
Time juxtaposing (time cutting + space scaling + space

shifting)* + time flattening
Marey’s schedule curvilinear space cutting + yaw + un-

folding
Slit tears (linear/curvilinear space cutting +

yaw + [unfolding] + space shifting)*
Sampling (time drilling + time scaling + yaw)*
3D rendering [shading] + oblique flattening

Table 1: Compound operations decomposed.

A compound operation inherits the parameters of its sub-
operations. For example, a discrete time flattening operation
is specified by a sequence of time values, as well as a pro-
jection function and an aggregation function. But in practice,
most compound operations enforce constraints between their
parameters. For example, all space scalings from a time jux-
taposing operation are typically the same.

Many elaborate temporal data visualization techniques
can be described as compound operations. For example, the
Visits technique (Figure 25) employs (time chopping + time
flattening + space shifting)*.
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Figure 25: Compound operation in Visits [TBC13].

3.5. Dynamic Operations

So far we only considered operations (both elementary and
compound) that transform a space-time cube into a static vi-
sual representation. On computer displays, operations can
also be applied in a dynamic manner. Dynamic operations
can involve either animation or interaction.

3.5.1. Animation

We refer to animation as the process of applying different
operations on a space-time cube over time, or similarly, vary-
ing the parameters of an operation over time.

The most common form of animation consists in changing
the position of a cutting operation over time, i.e. animated
time cutting. This results in the space-time cube content be-
ing “played back”. For example, if the space-time cube rep-
resents a visual scene like video surveillance data, synchro-
nizing the motion of the slice with a clock will result in a
real-time playback of the original scene. When significant
data is skipped during playback, the animation is closer to a
discrete time juxtaposing operation, except slices are shown
in sequence instead of being laid out side-by-side.

An animated time cutting operation can be preceded by a
filling operation in order to produce smooth animated tran-
sitions. Many examples exist in the literature, for exam-
ple when animating dynamic networks [ATMS∗11, RM13,
BPF14a] or scatterplots [Ros06,RFF∗08]. Most of these ex-
amples can be described as semantic volume interpolation
+ animated time cutting operations. Animated time cutting
can also be combined with other space-time cube operations
such as time flattening. For example, Gapminder can com-
bine scatterplot animations with static trails for points of in-
terest (a filtering + time flattening operation) [Ros06].

While many animation techniques can be described as an-
imated time cutting on static space-time cubes, more elabo-
rate techniques require operations to be applied in real-time.
For example, Hurter et al.’s system [HEF∗13] uses animated
time chopping to animate a network over time while preserv-
ing temporal context information. At every animation frame,
a time flattening is applied that produces colored trails and
a dynamic bundling operation is applied that guarantees a
continuous animation without jumping bundles [HET12].

Although animated time cutting and its many variants are
the most common forms of animation, other animated op-

erations exist. For example, animated 3D rendering can ex-
plain a transition between two space-time cube operations
to a user by smoothly rotating a space-time cube representa-
tion [BPF14b]. This technique will be discussed in Section
4, where we review space-time cube visualization systems.

3.5.2. Interaction

Interaction is similar to animation except the changes in the
space-time cube operations are under the user’s control.

Consider animated time cutting: if the position of the cut-
ting plane is controlled by the user (e.g., by dragging a
slider) instead of being automatically moved, then the op-
eration becomes interactive time cutting. A common imple-
mentation of interactive time cutting is the seeker bar on a
video player. As with animations, any operation can be made
interactive. Examples of interactive operations abound, and
we will review some of them in the next section.

4. Space-Time Cube Systems

Choosing an appropriate space-time cube operation depends
on many factors and almost always involves tradeoffs. In this
section we review a representative sample of visualization
systems that address this issue by supporting multiple space-
time cube operations. Such systems almost invariably use
3D rendering as an explicit representation of the space time
cube, both for showing an overview and for explaining how
different operations relate. We call these systems space-time
cube systems. Because they work by letting people switch
between different operations and tune their parameters, in-
teraction is a key feature.

4.1. CommonGIS

Figure 26: CommonGIS [AA99] (picture from [AA04a])

CommonGIS [AA99] is a feature-rich analytical system
for spatio-temporal data. It supports several space-time cube
operations, including time flattening and 3D rendering (Fig-
ure 26). The 3D rendering view is combined with a semantic
filtering operation to make the space-time cube transparent:
geographical context is only shown on a single time slice, as
a reference plane. Two widgets provide control of the projec-
tion function (arrow in Figure 26). One controls the camera
position around the cube, the other one controls its height.
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4.2. GeoTime
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Figure 27: Illustration after GeoTime [geo]

GeoTime is a carefully-designed commercial system for
analyzing spatio-temporal data [geo, KW04]. Events are
shown as spheres on a 3D rendering view that can be freely
rotated (Figure 27(a)). This view also uses a reference plane,
and a semantic volume interpolation operation is applied to
indicate event ordering. Users can perform time chopping
operations by dragging on a timeline widget. GeoTime also
supports time flattening and space flattening. Figure 27(a)
shows a space flattening view where time runs from top to
bottom, and a reference plane is provided that can be rotated.
Thin gray lines connect the two views. Finally, pan & zoom
is supported through space chopping + space scaling.

4.3. Tardis

(a) 3D rendering with multiple
time and space cutting

(b) 3D rendering with multiple
volume extraction+translation

Figure 28: Tardis [CCT∗99] and visual access [CFC∗96]

Tardis [CCT∗99, CFC∗96] is a system for visualizing en-
vironmental data using 3D rendering in combination with
advanced space-time cube operations. The voxels in the cube
are color-coded depending on the type of vegetation, its age,
soil characteristics or the presence of bush fires (Figure 28).

Tardis implements interactive semantic filtering: users

can, e.g., select a particular type of vegetation or a range of
vegetation ages. In addition, Tardis supports interactive or-
thogonal cutting, but in contrast with our previous examples,
cutting is always used in combination with 3D rendering.
Users can define and manipulate multiple orthogonal cut-
ting planes (Figure 28(a)). Further operations include open-
ing the cube like a book (interactive (volume extraction +
rotation)*) or apply a 3D fisheye effect (interactive (volume
extraction + translation)*). This fisheye effect, called “Vi-
sual Access Distortion”, pushes away voxels from the cursor
(Figure 28(b)).

4.4. VISUAL-TimePAcTS

(a) (b) (c)

(d) Shearing explained (e) The result of shearing

Figure 29: VISUAL TimePAcTS [VFC10]. (a) Space Flat-
tening on activities, (b) Oblique flattening, (c) Space flatten-
ing on individuals.

VISUAL-TimePAcTS is a system for analyzing activity
diaries [VFC10]. It uses non-geographical space-time cubes.
The cube’s two data axes can be mapped to data dimensions
such as individuals, locations, or activities. We focus on the
case where one axis maps to individuals while the other axis
maps to activities. Activities are also encoded using color.

VISUAL-TimePAcTS supports linear space flattening on
both data axes. Figure 29(a) shows 6 individuals (horizontal
axis) and their activities (colors) across time (vertical axis).
Figure 29(c) shows the evolution of activities aggregated
across all people over time. VISUAL-TimePAcTS supports
a seamless transition between the two operations through in-
teractive 3D rendering (Figure 29(c)). Since 3D rendering
employs orthographic projection and no shading, it is essen-
tially an oblique flattening operation.

VISUAL-TimePAcTS supports a more elaborate space-
time cube operation that prevents visual marks from overlap-
ping due to flattening. In Figure 29(c), for example, individ-
uals are horizontally offset when several of them do the same
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activity at the same time. This technique is called shearing
by the authors, and is further explained in Figures 29(d),
29(e). This technique is essentially a (linear space cutting +
space offset)* + space flattening operation, and is a hybrid
between space juxtaposing and space flattening.

4.5. Cubix

Figure 30: Different operations applied to a time-evolving
adjacency matrix in Cubix [BPF14b]

Cubix is a system for analyzing dynamic weighted net-
works through adjacency matrix representations [BPF14b].
A 3D rendering provides an overview of the data (Figure
30(a)). Time goes from left to right. Each cell of the cube
represents a connection between two nodes at a given time,
with size depending on connection weight. Cells can be
color-coded according to time, weight, or direction.

Cubix supports a range of space-time cube operations, in-
cluding time juxtaposing (Figure 30(b)), space juxtaposing
(detail in Figure 30(d)), animated time cutting , animated
space cutting, time flattening and space flattening. For flat-
tening operations, cells can be made translucent to visually
aggregate the history of connections. Cubix also supports se-
mantic filtering on connections based on their weight.

Cubix provides a control widget in the form of a stylized
cube, and whose different parts can be clicked or dragged
to switch between operations. All operation switches are ex-
plained using animated transitions through rotations of the
3D rendering representation, or through staged animations
of extraction and rigid transformation operations.

4.6. Video Cube Systems

Several space-time cube systems have been proposed to sup-
port video analysis [MB98,FLM00,DC03,CI05]. Video Cu-
bism [FLM00] uses a 3D rendering representation together

(a) (b)

Figure 31: (a) Video Cubism [FLM00]; (b) V 3 [DC03].

with an interactive volume extraction operation that is de-
fined by manipulating a planar cutting plane (Figure 31(a)).
Similary, Khronos projector [CI05] supports manipulation
of a non-planar cutting plane using touch or mid-air gestures
(Figure 4). V 3 [DC03] (Volume Visualization for Videos)
supports different operations, including time juxtaposing and
a 3D rendering view that can be combined with a bending
operation (Figure 31(b)). V 3 also supports filtering opera-
tions that allow removal of pixels of a certain color, or pixels
that do not change across a given time period.

Besides the space-time cube systems reviewed in this sec-
tion, there is a wealth of general 3D visualization systems.
Commercial and research tools exist in domains such as geo-
visualization (e.g., Voxler [Vox], ArcGIS [arc]), scientific vi-
sualization (e.g., VTK [SAH00], Matlab [mat] and R [r]),
and medical visualization [MTB03]. Although these tools do
not treat time as a specific dimension, they can be used to in-
spire the design of interactive space-time cube systems.

5. General Discussion

We now discuss the limitations of our descriptive framework
and consider areas for future research, including: unify-
ing our framework with the infovis pipeline model, extend-
ing it to other dimensionalities, considering non-planar me-
dia such as physical visualizations, characterizing the inner
structure of time space cubes, and considering the strengths
and weaknesses of different space-time cube operations.

5.1. Comparison with the Infovis Pipeline Model

Since our framework builds on the notion of composition
of operations, it shares similarities with another common
model: the infovis reference model, also called the info-
vis pipeline [CMS99, Chi00, JD13]. The infovis pipeline
sees visualization as a data-flow process, i.e., a sequence of
stages and transformations that turn raw data into a final im-
age. These transformations commonly include data trans-
formation, visual mapping, presentation mapping and ren-
dering [JD13]. Interactivity is implemented by having data
analysts alter these transformations at different stages.

There is clearly an analogy between transformations and
operations. However, the infovis pipeline and our framework
differ in several important respects. The infovis pipeline is a
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general model for visualizations, where the sequence of op-
erations is fixed, but the operations themselves are rather ab-
stract. For example, the pipeline model provides no specific
details about what happens in the visual mapping transfor-
mation. In contrast, our model only captures a specific fam-
ily of visualizations (temporal visualizations), its sequence
of operations is not fixed, and the operations are more con-
crete. The infovis pipeline is more general but too high-level
to capture the similarities and differences between the vi-
sualizations we presented. On the other hand, our model is
incomplete in that it does not define how the space-time cube
is built. The two models are therefore complementary.

Since the infovis pipeline has inspired the software archi-
tecture of several infovis tools [Fek04], it is worth consid-
ering to what extent the two models can be unified. Sev-
eral space-time cube operations could in principle be imple-
mented at different stages of the infovis pipeline. For exam-
ple, time flattening can be performed at the data transforma-
tion stage, by aggregating raw data over time. Alternatively,
time flattening could be emulated by explicitly rendering a
3D space-time cube on the screen and using a proper cam-
era placement and projection transformation. In that case, it
would be implemented at the rendering level.

However, these approaches would only provide a very
partial support for space-time cube operations. For a full sup-
port, our space-time cube needs to be reified as a first-class
object. Since it is both abstract and visual, our space-time
cube best aligns with the abstract visual form stage of the
pipeline [JD13]. Thus space-time cube operations are best
seen as presentation mapping transformations, i.e., trans-
formations that turn the abstract visual form into a fully-
specified 2D image or 3D model [JD13]. In other terms, our
space-time cube operations can be used to decompose and
refine the presentation mapping transformation of the info-
vis pipeline. We believe that implementing our framework
in this way could dramatically facilitate the exploration of a
wide range of temporal visualization techniques.

5.2. Other Dimensionalities

This review focused on temporal visualizations that involve
two spatial dimensions plus time. These two dimensions can
be inherently spatial or can result from 2D spatial encodings
of abstract data. However, temporal visualizations with other
dimensionalities are possible.

Most notably, a rich variety of temporal visualizations ex-
ist that involve a single spatial dimension plus time, e.g.,
timelines and time-series visualizations [AMST11]. In prin-
ciple, our framework still applies if the 3D space-time cube
is turned into a 2D space-time plane. Operations analogous
to our geometry transformation operations would capture
techniques such as spiral visualizations, calendar visualiza-
tions or cycle plots [AMST11]. However, since a 2D space-
time plane already naturally maps to a 2D planar display, and

Figure 32: Two physical implementations of the Matrix
Cube visualization [BPF14b] for dynamic networks, made
by this article’s first author.

since the richness of time-series visualizations and timelines
mostly stem from the visual encodings used, the usefulness
of our framework would be less clear in this case.

Other temporal visualization techniques, although less
common, show three spatial dimensions plus time. We be-
lieve most of them can be captured with operations on 4-
dimensional space-time hypercubes. For example, Tufte ex-
plains how small multiples can be used to show the evolu-
tion of a three-dimensional storm [BB95]. This approach
amounts to applying a time juxtaposition operation on a
space-time hypercube, where each time cutting operation
yields a 3D image. Similarly, FromDady [HTC09] uses 3D
trails to show the trajectories of airplanes in space. This tech-
nique amounts to performing a time flattening on a space-
time hypercube. Extending our framework to higher data di-
mensionalities is an exciting topic for future research. How-
ever, it is less easy to imagine a hypercube than a cube, so
the merits of such a conceptual model still remain to be seen.

5.3. Non-Planar Media

Throughout this review we assumed the presentation
medium to be planar. Although these are by far the most
common, other display shapes are being explored in HCI,
some of which are even deformable [RPPH12, HV08]. In
these cases, the conditions for an operation to be complete
are not the same. This opens up a wide range of possibili-
ties for new visualization designs. For example, one imple-
mentation of the Khronos projector (Figure 4) employs back
projection on a freely deformable cloth, allowing the use
of non-planar cutting operations that are complete. In ad-
dition, physical visualizations make it possible to faithfully
display 3D space-time cubes without any additional oper-
ations [JDF13, JD13]. Many such visualizations have been
already crafted by scientists, artists and designers [DJ13].

Physical temporal visualizations can even be made mod-
ular to support interactive space-time cube operations. Fig-
ure 32 shows two physical representations of a dynamic net-
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work [BPF14b] made of laser-cut and laser-engraved acrylic.
The left version supports interactive time cutting while the
right version supports interactive space cutting. Cuts can be
taken apart and manipulated freely, allowing for time juxta-
posing and space juxtaposing as well as time flattening and
space flattening, if viewed from a proper orthogonal angle
and distance. For another example see [STB].

5.4. The Inner Structure of Space-Time Cubes

In this review we considered space-time cubes as monolithic
entities. Two space-time cubes can however look quite dif-
ferent, depending on what data is visualized: migration of
animals, earthquakes, changes in vegetation and ecosystems,
networks with changing connections, surveillance videos, or
scatterplots evolving over time. We can refer to this lower-
level decomposition as the cube’s inner structure.

Inner structure is likely to be an important factor when
choosing between space-time cube operations. For example,
videos produce maximally dense inner structures and there-
fore are not well-suited to 3D rendering, unless comple-
mentary operations such as filtering are used (Figure 31(b)).
Structures that present large variations over time may not
be well-suited to time juxtaposing because objects could be
difficult to relate across time slices. We plan to extend our
descriptive framework by characterizing different types of
inner structures for space-time cubes.

5.5. Which Operation to Choose?

Again, our contribution is a descriptive conceptual frame-
work, and we chose not consider the relative merits and lim-
itations of different techniques. We believe that a detailed
descriptive model is a necessary first step, before consider-
ing performance issues. The question however remains as of
which operation works best under which context.

Several studies comparing space-time cube operations
have been reported in the past. Many of them com-
pared animation (usually animated time cutting) against
static visualizations (usually time juxtaposing) [TMB02,
GMH∗06, RFF∗08, APP11, FQ11, AP12b], finding benefits
and drawbacks for both approaches. Other studies evalu-
ated space time-cube representations (i.e., 3D rendering)
against a range of baseline conditions, including time flat-
tening [KDA∗09,WvdWvW09,KK12,AABW12], time cut-
ting [WvdWvW09, BCH07], and space cutting [AABW12].
Although such empirical investigations are crucial for the
advancement of science, only a subset of all possible oper-
ations have been covered, and many of the existing findings
are hard to generalize beyond the domain, type of data, and
operation parameters used in the stimuli. For example, ani-
mation can mean either animated time cutting or interactive
time cutting, and space-time cube visualizations can be im-
plemented in a multitude of ways, including in the content

Figure 33: Visualization of energy consumption over time
[vWvS99]. One horizontal axis is mapped to days while the
other one is mapped to hours.

transformations they use (e.g., aggregation [BCH07] or fil-
tering [AABW12]), and in the interactions they implement.
Overall, findings are very hard to compare for a lack of a
consistent descriptive terminology.

A clear and descriptive framework would allow us to bet-
ter structure this body of evidence and tease apart the ef-
fects of different subtle design features and to better control
for confounds. We showed how many temporal visualiza-
tion techniques can be decomposed into elementary opera-
tions. These operations can be combined in many ways or
made dynamic at different levels (either through animation
or interaction). The characterization of the inner structure
of space-time cubes, may already provide many elements to
discuss the practical strengths and weaknesses of space-time
cube operations, mostly based on well-established knowl-
edge on perception and HCI, and on common sense.

Running studies for answering specific research questions
will naturally remain important, and we hope our descriptive
framework will facilitate the design of such studies and the
discussion of findings in a more informative manner.

5.6. Other Limitations

Our framework is designed as a thinking tool. Like any
model, it is necessarily incomplete. First, our taxonomy of
elementary operations in Figure 24 is not meant to cover all
possible operations. Second, our framework does not pro-
vide much guidance for interaction design: the design space
for interactive operations has only been partially explored.
Finally, not all techniques for visualizing temporal data can
be captured with space-time cubes. For example, temporal
data can be visualized using two time axes instead of a sin-
gle data axis (see Figure 33). Our framework is not meant to
restrict creativity but rather to help visualization designers
find new solutions, extend or generalize existing ones, and
think out of the box.
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Again, our framework assumes that the space-time cube
already exists. It does not provide guidance for producing the
space-time cube itself. For abstract data, many visual map-
pings can be used to produce individual slices. For example,
locations on a map can yield values for altitude, temperature,
rain, vegetation and soil type. How to visualize all these at-
tributes at any particular point in time is a general problem
of information visualization, but the choice may also affect
the efficiency of later space-time cube operations.

6. Conclusion

We reviewed various techniques to visualize temporal data,
by describing them as sequences of parametric operations
applied to a conceptual space-time cube. Our operations are
independent from the underlying data and can be applied
across a range of application domains, be they cartography,
dynamic network analysis, geopolitics, or video analytics.

By introducing domain-agnostic concepts and a clear ter-
minology, this article aims at facilitating the comparison of
different approaches for visualizing temporal data. Exist-
ing visualizations from one data domain can be analyzed in
terms of elementary operations and then be adapted to other
domains and problems.

By giving a better vision of the richness of the design
space, we hope our model will also motivate the exploration
of new approaches. It also stresses the importance of devel-
oping fully-integrated interactive systems and toolkits that
can support a range of techniques in a consistent manner.

Our model also aims at facilitating the design of studies
and discussing their results in a more informative manner.
We hope the presented terminology and low-level concepts
will help design better experiments that tease out important
factors in dynamic data visualization. Many more controlled
studies are needed to understand the trade-offs between dif-
ferent space-time cube operations and how they perform de-
pending on the task, the data, and the people that use them.

This work mostly arose out of the need to teach temporal
information visualization to undergrad students. We there-
fore hope that it will help other people teach this field effec-
tively, by providing a clear structure and a clear terminology
on which to base higher-level discussions and analyses.
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